AgroLD API.

AgroLD API.

Gildas Tagny Ngompé Aravind Venkatesan Nordine El Hassouni Manuel Ruiz Pierre Larmande

Institut de Biologie Computationnelle (IBC),Université de Montpellier, 860 rue St Priest, 34095 Montpellier Cedex 5, France

AGAP, Plateforme SouthGreen, CIRAD, 911 av. Agropolis, 34398 Montpellier, France

UMR DIADE, Plateforme SouthGreen, IRD, 911 av. Agropolis, 34394 Montpellier, France

South Green Bioinformatics Platform, Montpellier, France

Corresponding Author Email: 
{aravindvenkatesan}{tagnyngompe}@gmail.com, {manuel.ruiz}{nordine.el_hassouni}@cirad.fr, pierre.larmande@ird.fr
Page: 
133-157
|
DOI: 
https://doi.org/10.3166/ISI.21.5-6.133-157
Received: 
N/A
|
Accepted: 
N/A
|
Published: 
31 December 2016
| Citation
Abstract: 

Agronomy is an overarching field constituting various research areas such as genetics, plant molecular biology, ecology and earth science. The last several decades has seen the successful development of high-throughput technologies that have revolutionised and transformed agronomic research. The application of these technologies have generated large quantities of data and resources over the web. In most cases these sources remain autonomous and disconnected. The Agronomic Linked Data project (AgroLD) is a semantic web knowledge base designed to integrate data from various publicly available plant centric data sources. The aim of AgroLD project is to provide a portal for bioinformaticians and domain experts to exploit the homogenized data towards enabling to bridge the knowledge

Keywords: 

molecular biology, agronomy, semantic seb, linked data, RDF, SPARQL, RESTful web services

1. Introduction
2. Approches existantes d’interrogation des bases de données de triplets RDF
3. Développement de l’infrastructure d’accés aux données liées
4. Utilisation de l’application web AgroLD
5. Conclusion
  References

Antezana E., Kuiper M., Mironov V. (2009). Biological knowledge management: the emerging role of the Semantic Web technologies. Briefings in Bioinformatics, vol. 10, no 4, p. 392–407.

Aranguren M. E., González A. R.,Wilkinson M. D. (2014). Executing SADI services in Galaxy. Journal of biomedical semantics, vol. 5, no 1, p. 42.

Ashburner M., Ball C. A., Blake J. A., Botstein D., Butler H., Cherry J. M. et al. (2000). Geneontology: tool for the unification of biology. Nature genetics, vol. 25, no 1, p. 25–29.

Belleau F., Nolin M.-A., Tourigny N., Rigault P., Morissette J. (2008). Bio2rdf: towards a mashup to build bioinformatics knowledge systems. Journal of biomedical informatics, vol. 41, no 5, p. 706–716.

Berners-Lee T., Hendler J., Lassila O., Others. (2001). The semantic web. Scientific american, vol. 284, no 5, p. 28–37.

Brooke J. (1996). SUS-A quick and dirty usability scale. Usability evaluation in industry, vol. 189, no 194, p. 4–7.

Cooper L., Walls R. L., Elser J., Gandolfo M. A., Stevenson D. W., Smith B. et al. (2013). The plant ontology as a tool for comparative plant anatomy and genomic analyses. Plant & cell physiology, vol. 54, no 2, p. e1.

Elbedweihy K., Wrigley S. N., Ciravegna F., Reinhard D., Bernstein A. (2012). Evaluating semantic search systems to identify future directions of research. In The semantic web: Eswc 2012 satellite events, p. 148–162. Springer.

Erling O., Mikhailov I. (2009). Faceted Views over Large-Scale Linked Data. In Ldow.

Ferré S. (2014). Expressive and scalable query-based faceted search over sparql endpoints. In International semantic web conference, p. 438–453.

Fielding R. T., Taylor R. N. (2002). Principled design of the modern Web architecture. ACM Transactions on Internet Technology, vol. 2, no 2, p. 115–150.

Goble C., Stevens R. (2008). State of the nation in data integration for bioinformatics. Journal of biomedical informatics, vol. 41, no 5, p. 687–93.

González A., Callahan A., Cruz-Toledo J., Garcia A., Egaña Aranguren M., Dumontier M. et al. (2014). Automatically exposing OpenLifeData via SADI semantic Web Services. J Biomed Semantics, vol. 5, no 1, p. 46.

Groth P., Loizou A., Gray A. J., Goble C., Harland L., Pettifer S. (2014). API-centric Linked Data integration: The Open PHACTS Discovery Platform case study. Web Semantics: Science, Services and Agents on the World Wide Web, p. 1–7.

Haag F., Lohmann S., Bold S., Ertl T. (2014). Visual SPARQL Querying based on Extended Filter/Flow Graphs. In Proceedings of the 12th international working conference on advanced visual interfaces (avi ’14), p. 305–312. New York, NY, USA: ACM.

Haag F., Lohmann S., Siek S., Ertl T. (2015). Visual Querying of Linked Data with {Query-VOWL}. In Joint proceedings of sumpre 2015 and hswi 2014-15. CEUR-WS.

Heim P., Hellmann S., Lehmann J., Lohmann S., Stegemann T. (2009). RelFinder: Revealing relationships in RDF knowledge bases. In Semantic multimedia, p. 182–187. Springer.

Jupp S., Klein J., Schanstra J., Stevens R. (2011). Developing a kidney and urinary pathway knowledge base. Journal of biomedical semantics, vol. 2, no 2, p. 1.

Jupp S., Malone J., Bolleman J., Brandizi M., Davies M., Garcia L. et al. (2014). The EBI RDF platform: linked open data for the life sciences. Bioinformatics, vol. 30, no 9, p. 1338–1339.

Kamdar M. R., Zeginis D., Hasnain A., Decker S., Deus H. F. (2014). ReVeaLD: A user-driven domain-specific interactive search platform for biomedical research. Journal of Biomedical Informatics, vol. 47, p. 112–130.

Kim J.-D., Cohen K. B. (2013). Natural language query processing for SPARQL generation: A prototype system for SNOMED CT. In Proceedings of biolink, p. 32–38.

Luciano J. S., Andersson B., Batchelor C., Bodenreider O., Clark T., Denney C. K. et al. (2011). The translational medicine ontology and knowledge base: driving personalized medicine by bridging the gap between bench and bedside. Journal of biomedical semantics, vol. 2, no 2, p. 1.

Momtchev V., Peychev D., Primov T., Georgiev G. (2009). Expanding the Pathway and Interaction Knowledge in Linked Life Data. In International semantic web challenge.

Mungall C. J., Batchelor C., Eilbeck K. (2011). Evolution of the Sequence Ontology terms and relationships. Journal of biomedical informatics, vol. 44, no 1, p. 87–93.

Pautasso C. (2014). RESTful Web Services: Principles, Patterns, Emerging Technologies. Web Services Foundations, Springer Science+Business Media New York, p. 31–51.

Rietveld L., Hoekstra R. (2015). The YASGUI Family of SPARQL Clients. Semantic Web Journal.

Schweiger D., Trajanoski Z., Pabinger S. (2014). SPARQLGraph: a web-based platform for graphically querying biological Semantic Web databases. BMC bioinformatics, vol. 15, no 1, p. 279.

Uren V., Lei Y., Lopez V., Liu H., Motta E., Giordanino M. (2007). The usability of semantic search tools: a review. The Knowledge Engineering Review, vol. 22, no 04, p. 361–377.

Vander Sande M., Colpaert P., Van Deursen D., Mannens E.,Walle R. de. (2012). The datatank: an open data adapter with semantic output. In 21st international conference on world wide web, proceedings, p. 4.

Venkatesan A., Tripathi S., Sanz de Galdeano A., Blondé W., Lægreid A., Mironov V. et al. (2014). Finding gene regulatory network candidates using the gene expression knowledge base. BMC bioinformatics, vol. 15, no 1, p. 386.

Whitenton K. (March 16, 2014). Filters vs. Facets: Definitions. Consulté sur https://www.nngroup.com/articles/filters-vs-facets/

Williams A. J., Harland L., Groth P., Pettifer S., Chichester C., Willighagen E. L. et al. (2012). Open phacts: semantic interoperability for drug discovery. Drug discovery today, vol. 17, no 21, p. 1188–1198.