Risk Analysis of Global Warming-induced Greenhouse Gas Emissions from Natural Sources

Risk Analysis of Global Warming-induced Greenhouse Gas Emissions from Natural Sources

Ü. Mander K. Sohar J. Tournebize J. PÄrn 

University of Tartu, 46 Vanemuise St, Tartu, Estonia

Irstea, HBAN, Antony Cedex, France

Czech Academy of Sciences, Zámek 1, Pru°honice, Czech Republic

Keele University, Staffordshire, UK

Page: 
181-192
|
DOI: 
https://doi.org/10.2495/SAFE-V6-N2-181-192
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

The increase in the emissions of greenhouse gases (GHG) CO2, CH4, and N2O is the most important factor causing global warming. Natural sources make up about 96%, 46%, and 64% of total emissions of the three gases, respectively. Relatively small man-made CO2  fluxes, together with CH4  and N2O  (with a radiative force 34 and 298 times higher than that of CO2, respectively) upset the natural balance of the carbon (C) cycle and create an artificial forcing of global temperatures which is warming the planet. However, even after stopping all anthropogenic CO2 emissions, the warming-induced GHG from natural sources will cause an on-going temperature increase and many resulting environmental problems. Base on literature, we analyse the potential change in GHG emissions from the main natural sources, which are influenced by the effects of global warming. Since there are various uncertainties in the estimations of terrestrial-atmosphere and ocean-atmosphere CO2 exchange, this most important factor remains un-predicted and needs significantly more investigation of the ability of oceans and terrestrial ecosystems to absorb CO2. Both CH4 and N2O emissions may continue to increase. The thawing of CH4 hydrates in the ocean shelf and in permafrost regions is the largest long-term threat for global warming, but even now rising temperature will enhance emissions from wetlands, lakes, vegetation and even upland soils, due to an increasing threat of wildfires. Changes in hydrological regime are the main driving force for N2O emissions.

Keywords: 

carbon dioxide, climate extremes, floods, methane, methane hydrates, nitrous oxide, wetlands, wildfire.

  References

[1] Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V. & Midgley, P.M. (eds), Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, p. 1535, 2013.

[2] Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K. & Johnson, C.A. (eds), Climate change 2001: the scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, p. 881, 2001.

[3] Davenport, C., Nations approve landmark climate record in Paris, New York Times. 12 December 2015, retrieved 14 December 2015, available at http://www.cop21.gouv.fr/en/

[4] Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M. & Miller, H.L. (eds), Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press: Cambridge, UK, and New York, NY, p. 996, 2007.

[5] U.S. EPA, Methane and nitrous oxide emissions from natural sources EPA 430-R-10001, 2010.

[6] Leppelt, T., Dechow, R., Gebbert, S., Freibauer, A., Lohila, A., Augustin, J., Drösler, M., Fiedler, S., Glatzel, S., Höper, H., Järveoja, J., Lærke, P.E., Maljanen, M., Mander, Ü., Mäkiranta, P., Minkkinen, K., Ojanen, P., Regina, K. & Strömgren, M., Nitrous oxide emission hotspots from organic soils in Europe. Biogeosciences, 11, pp. 6595–6612, 2014. http://dx.doi.org/10.5194/bg-11-6595-2014

[7] Pärn, J., Aasa, A., Egorov, S., Filippov, I., Gabiri, G., Gheorghe, I., Järveoja, J., Kasak, K., Laggoun-Défarge, F., Luswata, C., Maddison, M., Mitsch, W., Óskarsson, H., Pellerin, S., Salm, J.-O., Sohar, K., Soosaar, K., Teemusk, A., Tenywa, M., Villa, J., Vohla, C. & Mander, Ü., Global boundary lines of N2O and CH4 emission in peatlands. In The Role of Natural and Constructed Wetlands in Nutrient Cycling and Retention on the Landscape, ed. J. Vymazal, Springer International Publishing, Třeboň, pp. 87–102, 2015. http://dx.doi.org/10.1007/978-3-319-08177-9_7

[8] Bridgham, S., Cadillo-Quiroz, H., Keller, J. & Zhuang, Q., Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales. Global Change Biology, 19(5), pp. 1325–1346, 2013. http://dx.doi.org/10.1111/gcb.12131

[9] Choudhury, T.R. & Dick, R.P., Ecology of aerobic methanotrophs in controlling methane fluxes from wetlands. Applied Soil Ecology, 65, pp. 8–22, 2013. http://dx.doi.org/10.1016/j.apsoil.2012.12.014

[10] Sundqvist, E., Crill, P., Mölder, M., Vestin, P. & Lindroth, A., Atmospheric methane removal by boreal plants. Geeophysical Research Letters, 39, L21806, 2012.

[11] Keppler, F., Hamilton, J.T.G., Brass, M. & Rockmann, T., Methane emissions from terrestrial plants under aerobic conditions. Nature, 449, pp. 187–191, 2006. http://dx.doi.org/10.1038/nature04420

[12] Vigano, I., van Weelden, H., Holzinger, R., Keppler, F., McLeod, A. & Rockmann, T., Effect of UV radiation and temperature on the emission of methane from plant biomass and structural components. Biogeosciences, 5, pp. 937–947, 2008. http://dx.doi.org/10.5194/bg-5-937-2008

[13] Ghyczy, M., Torday, C., Kaszaki, J., Szabo, A., Czobel, M. & Boros, M., Hypoxia-induced generation of methane in mitochondria and eukaryotic cells - an alternative approach to methanogenesis. Cellular Physiology and Biochemistry, 21, pp. 251–258, 2008. http://dx.doi.org/10.1159/000113766

[14] Messenger, D.J., McLeod, A.R. & Fry, S.C., The role of ultraviolet radiation, photosynsitizers, reactive oxygen species and ester groups in mechanisms of methane formation from pectin. Plant Cell and Environment, 32, pp. 1–9, 2009. http://dx.doi.org/10.1111/j.1365-3040.2008.01892.x

[15] Yavitt, J.B., Williams, C.J. & Wieder, R.K., Soil chemistry versus environmental controls on production of CH4 and CO2 in northern peatlands. European Journal of Soil Science, 56, pp. 169–178, 2005. http://dx.doi.org/10.1111/j.1365-2389.2004.00657.x

[16] Joosten, H., The Global Peatlands CO2 Picture. Peatland status and emissions in all countries of the world. Wetlands International, Ede, Draft, pp. 1–35, 2009, available at https://unfccc.int/files/kyoto_protocol/application/pdf/draftpeatlandco2report.pdf

[17] Mitsch, W.J., Bernal, B., Nahlik, A.M., Mander, Ü., Zhang, L., Anderson, L.,  Jørgensen, S.E. & Brix, H., Wetlands, carbon, and climate change. Landscape Ecology, 28(4), pp. 583–597, 2013. http://dx.doi.org/10.1007/s10980-012-9758-8

[18] Whiting, G.J. & Chanton, J.P., Greenhouse carbon balance of wetlands: methane emission versus carbon sequestration. Tellus, 53B, pp. 521–528. 2001. http://dx.doi.org/10.1034/j.1600-0889.2001.530501.x

[19] Hefting, M.M., Bobbink, R. & deCaluwe, H., Nitrous oxide emission and denitrification in chronically nitrate -loaded riparian buffer zones. Journal of Environmental Quality, 32(4), pp. 1194–1203, 2003. http://dx.doi.org/10.2134/jeq2003.1194

[20] Schimel, D. & Baker, D., The wildfire factor. Nature, 420, p. 29, 2002. http://dx.doi.org/10.1038/420029a

[21] Turetsky, M.R., Benscoter, B., Page, S., Rein, G., van der Werf, G. & Watts, A., Global vulnerability of peatlands to fire and carbon loss. Nature Geoscience, 8, pp. 11–14, 2015. http://dx.doi.org/10.1038/ngeo2325

[22] Page, S.E., Siegert, F., Rieley, J.O., Boehm, H.-D.V., Jaya, A. & Limin, S.H., The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature, 420, pp. 61–65, 2002. http://dx.doi.org/10.1038/nature01131

[23] Naudts, K., Chen, Y.Y., McGrath, M.J., Ryder, J., Valade, A., Otto, J. & Luyssaert, S., Europe’s forest management did not mitigate climate warming. Science, 351(6273), pp. 597–600, 2016. http://dx.doi.org/10.1126/science.aad7270

[24] Melillo, J.M., McGuire, A.D., Kicklighter, D.W., Moore, B., Vorosmarty, C.J. & Schloss, A.L., Global climate-change and terrestrial net primary production. Nature, 363, pp. 234–240, 1993. http://dx.doi.org/10.1038/363234a0

[25] Monteith, D.T., Stoddard, J.L., Evans, C.D., de Wit, H.A., Forsius, M., Hogasen, T., Wilander, A., Skjelkvåle, B.L., Jeffries, D.S., Vuorenmaa, J., Keller, B., Kopacel, J. & Vesely, J., Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature, 450, pp. 537–539, 2007. http://dx.doi.org/10.1038/nature06316

[26] Danilova, O.V., Belova, S.E., Kulichevskaya, I.S. & Dedysh, S.N., Decline of activity and shifts in the methanotrophic community structure of an ombrotrophic peat bog after wildfire. Microbiology, 84(5), pp. 624–629, 2015. http://dx.doi.org/10.1134/S0026261715050045

[27] McNamara, N.P., Gregg, R., Oakley, S., Stott, A., Rahman, M.T., Murrell, J.C., Wardle, D.A., Bardgett, R.D. & Ostle, N.J., Soil methane sink cpacity response to a long-term wildfire chronosequence in Northern Sweden. PLoS ONE, 10(9), e0129892, 2015. http://dx.doi.org/10.1371/journal.pone.0129892

[28] Middelburg, J.J., Nieuwenhuize, J., Iversen, N., Hogh, N., De Wilde, H., Helder, W., Seifert, R. & Christof, O., Methane distribution in European tidal estuaries. Biogeochemistry, 59(1–2), pp. 95–119, 2002. http://dx.doi.org/10.1023/A:1015515130419

[29] O’Connor, F.M., Boucher, O., Gedney, N., Jones, C.D., Folberth, G.A., Coppell, R., Friedlingstein, P., Collins, W.J., Chapellaz, J., Ridley, J. & Johnson, C.E., Possible role of wetlands, permafrost, and methane hydrates in the methane cycle under future climate change: a review. Reviews of Geophysics, 48(RG4005), pp. 1–33, 2010. http://dx.doi.org/10.1029/2010rg000326

[30] Soosaar, K., Mander, Ü., Maddison, M., Kanal, A., Kull, A., Lõhmus, K., Truu, J. & Augustin, J., Dynamics of gaseous nitrogen and carbon fluxes in riparian alder forests. Ecological Engineering, 37(1), pp. 40–53, 2011. http://dx.doi.org/10.1016/j.ecoleng.2010.07.025

[31] Martikainen, P.J., Nykänen, H., Crill, P. & Silvola, J., Effect of a lowered water-table on nitrous-oxide fluxes from northern peatlands. Nature, 366, pp. 51–53, 1993. http://dx.doi.org/10.1038/366051a0