Biodiesel Production from Microalgae: Influence of Pretreatment on Lipid Extraction

Biodiesel Production from Microalgae: Influence of Pretreatment on Lipid Extraction

M. Veillette A. Giroir-Fendler  N. Faucheux  N. Faucheux 

Department of Chemical Engineering and Biotechnological Engineering,Engineering Faculty, Université de Sherbrooke, Canada

Université de Lyon, Lyon F-69003, France

30 June 2015
| Citation



By having the objective of reducing their global emissions of carbon dioxide (CO2) and their petroleum dependency, many industrialized countries like European Union countries support the sustainable development and will increase, by 2020, the ratio of biofuel (bioethanol or biodiesel) blend with transportation fuel to 10% (v/v).

However, this objective could deprive the world of arable lands needed to feed 320 to 460 million people. To replace conventional vegetable oils (for example, canola oil) to produce biodiesel, microalgae could be used as the bulk material, as their total lipid yield can be as high as 75% (w/w).  To produce biodiesel, the lipids must previously be extracted from the wet microalgae. This study showed that microalgae could be directly extracted without dewatering process with a yield of 29.0% (w/w) by using boiling pretreatments (water phase). The yield obtained was slightly lower than the traditional extraction methods (33.0% w/w) implying the costly technique of freeze-drying. The results also showed that the chemical physicochemical pretreatment considered had no influence on the composition of the fatty acid methyl esters of the biodiesel produced with methyl pal- mitoleate as the major component with up to 28.0% (w/w).


biodiesel, extraction, lipids, microalgae, transesterification


[1] BP, Statistical Review of World energy: Full Report 2011, available at, 2012.

[2] United Nations, World Population Prospects: The 2006 Revision, available at, 2006.

[3] Population Division of the Department of Economic and Social Affairs of the United Nations Secretariat, Online database population, available at, 2012.

[4] United Nations Department of Economic and Social Affairs, World population prospects: the 2008 revision. Population Newsletter, 87, pp. 1–20, 2009.

[5] International Energy Agency, Worldwide Trends in Energy Use and Efficiency, available at, 2008.

[6] U.S. Energy Information Administration, Annual Energy Outlook – 2011, available at, 2011.

[7] Energy Information Administration, International Carbon Dioxide Emissions and Carbon Intensity, U.S. Energy Information Administration, available at, 2008.

[8] Conseil économique pour le développement durable, Après Copenhag: Des engagements à géométrie variables, République Française, available at http://www.developpement-durable., 2010.

[9] Bindraban, P.S., Bulte, E.H. & Conijn, S.G., Can large-scale biofuels production be sustainable by 2020? Agricultural Systems, 101, pp. 197–199, 2009. doi:

[10] Goldemberg, J. & Guardabassi, P., Are biofuels a feasible option? Energy Policy, 37(1), pp. 10–14, 2009. doi:

[11] Bordet, J., Michez, J. & Gilot, A., Mise en oeuvre du plan biocarburant au regard de la protection de la ressource en eau, Ministère de l’agriculture, de l’alimentation, de la pêche, de la ruralité et de l’aménagement du territoire, available at, 2006.

[12] Chisti, Y., Biodiesel from microalgae. Biotechnology Advances, 25(3), pp. 294–306, 2007. doi:

[13] de Morais, M.G. & Costa, J.A.V., Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide. Energy Conversion and Management, 48(7), pp. 2169–2173, 2007. doi:

[14] Borkenstein, C.G., Knoblechner, J., Frühwirth, H. & Schagerl, M., Cultivation of Chlorella emersonii with flue gas derived from a cement plant. Journal of Applied Phycology, 23(1), pp. 131–135, 2011. doi:

[15] United States Environmental Protection Agency, A comprehensive analysis of biodiesel impacts on exhaust emissions, available at, 2002.

[16] Machado Corrêa, S. & Arbilla, G., Carbonyl emissions in diesel and biodiesel exhaust. Atmospheric Environment, 42, pp. 769–775, 2008. doi:

[17] Sheehan, J., Combreco, V., Duffield, J., Graboski, M. & Shapouri, H., An overview of biodiesel and petroleum diesel life cycles, National Renewable Energy Laboratory, available at, 1998.

[18] Singh, J. & Gu, S., Commercialization potential of microalgae for biofuels production. Renewable and Sustainable Energy Reviews, 14(9), pp. 2596–2610, 2010. doi:

[19] Sheehan, J., Dunahay, T., Benemann, J. & Roessler, P., A look back at the U.S. Department of Energy’s aquatic species program – biodiesel from algae, U.S. Department of Energy’s Office of Fuels Development, available at, 1998.

[20] Lee, J., Yoo, C., Jun, S., Ahn, C. & Oh, H., Comparison of several methods for effective lipid extraction from microalgae. Bioresource Technology, 101, pp. 575–577, 2010. doi:

[21] Lee, S., Yoon, B. & Oh, H., Rapid method for the determination of lipid from the green alga Botryococcus braunii. Biotechnology Techniques, 12(7), pp. 553–556, 1998. doi:

[22] Pernet, F. & Tremblay, R., Lipids, 38(11), pp. 1191–1195, 2003.

[23] Kita, K., Okada, S., Sekino, H., Imou, K., Yokoyama, S. & Amano, T., Thermal pre-treatment of wet microalgae harvest for efficient hydrocarbon recovery. Applied Energy, 87(7), pp. 2420–2423, 2010. doi:

[24] Johnson, M.B. & Wen, Z., Production of biodiesel fuel from the microalga Schizochytrium limacinum by direct transesterification of algal biomass. Energy Fuels, 23, pp. 5179–5183, 2009. doi:

[25] Veillette, M., Viens, P., Avalos Ramirez, A., Brzezinski, R. & Heitz, M., Effect of ammonium concentration on microbial population and performance of a biofilter treating air polluted with methane. Chemical Engineering Journal, 171(3), pp. 1114–1123, 2011. doi:

[26] Lepage, G. & Roy, C.C., Improved recovery of fatty acid through direct transesterification without prior extraction or purification. Journal of Lipid Research, 25(12), pp. 1391–1396, 1984.

[27] Cooney, M., Young, G. & Nagle, N., Extraction of bio-oils from microalgae. Separation & Purification Reviews, 38, pp. 291–325, 2009.

[28] Halim, R., Gladman, B., Danquah, M.K. & Webley, P.A., Oil extraction from microalgae for biodiesel production. Bioresource Technology, 102(1), pp. 178–185, 2010. doi:

[29] Cadoret, J. & Bernard, O., La production de biocarburant lipidique avec des microalgues: promesses et défis. Journal de la Société de Biologie, 202(3), pp. 201–211, 2008. doi:

[30] Mahesar, S.A., Sherazi, S.T.H., Abro, K., Kandhro, A., Bhanger, M.I., van de Voort, F.R. & Sedman, J., Application of microwave heating for the fast extraction of fat content from the poultry feeds. Talanta, 75(5), pp. 1240–1244, 2008. doi:

[31] Virot, M., Tomao, V., Ginies, C., Visinoni, F. & Chemat, F., Microwave-integrated extraction of total fats and oils. Journal of Chromatography A, 1196–1197, pp. 57–64, 2008. doi:

[32] Lewis, T., Nichols, P.D. & McMeekina, T.A., Evaluation of extraction methods for recovery of fatty acids from lipid-producing microheterotrophs. Journal of Microbiological Methods, 42, pp. 107–116, 2000. doi:

[33] Samorì, C., Torri, C., Samorì, G., Fabbri, D., Galletti, P., Guerrini, F., Pistocchi, R. & Tagliavini, E., Extraction of hydrocarbons from microalga Botryococcus braunii with switchable solvents. Bioresource Technology, 101(9), pp. 3274–3279, 2010. doi:

[34] Williams, P.J. & Laurens, L.M., Microalgae as biodiesel and biomass feedstocks: review and analysis of the biochemistry, energetics and economics. Energy & Environmental Science, 3, pp. 554–590, 2010. doi:

[35] Hara, A. & Radin, N.S., Lipid extraction of tissues with a low toxicity solvent. Analytical Biochemistry, 90(1), pp. 420–426, 1978. doi:

[36] Kabalnov, A. & Wennerström, H., Macroemulsion stability: the oriented wedge theory revisited. Langmuir, 12(2), pp. 276–292, 1996. doi:

[37] Rintoul, S., Measuring oil in water. Pollution Engineering, 42(12), 2010.

[38] Nagle, N. & Lemke, P., Production of methyl-ester fuel from microalgae. Applied Biochemistry and Biotechnology, 24(24-25), pp. 355–361, 1990. doi:

[39] Tran, H., Hong, S. & Lee, C., Evaluation of extraction methods for recovery of fatty acids from Botryococcus braunii LB 572 and Synechocystis sp. PCC 6803. Biotechnology and Bioprocess Engineering, 14(2), pp. 187–192, 2009. doi:

[40] National Renewable Energy Laboratory, Biodiesel Handling and Use Guide, available at, 2009.

[41] ASTM Standard D6751-10, 2010, Standard specification for biodiesel fuel blend stock (B100) for middle distillate fuels, ASTM International, 2010, West Conshohocken, PA, doi: