Experimental study of the performance of an earth to air heat exchanger located in arid zone during the summer period

Experimental study of the performance of an earth to air heat exchanger located in arid zone during the summer period

Omar Hamdi Abdelhafid Brima  Nouredine Moummi  Hamza Nebbar 

Mechanical Engineering Laboratory (L.G.M), Department of Mechanical Engineering. Biskra University, Algeria

Corresponding Author Email: 
ilmomar@gmail.com
Page: 
1323-1329
|
DOI: 
https://doi.org/10.18280/ijht.360422
Received: 
18 July 2017
| |
Accepted: 
28 April 2018
| | Citation

OPEN ACCESS

Abstract: 

The aim of this study is to explore the performance of an Earth to Air Heat Exchanger (EAHE) and find out the utility of the device in the cooling of buildings in the hot region. The EAHE cooling potential was experimentally investigated for a placement in Biskra, a city located in the south east of Algeria. A cylindrical tube of PVC in the serpentine form having an internal diameter of 0.110m and a total length of 56m is buried at 3m depth with a slope of 2% at Biskra University. The temperature readings of soil, external air and a buried duct at several positions were recorded during the period of May and September of the year 2013. Results showed that EAHE cooling potential (discrepancy between the inlet temperature (ambient) and the outlet temperature of the EAHE) was found promising as it could exceed 15 °C. The duration of operation of the heat exchanger does not influence the outlet temperature. EAHE is very useful to refresh buildings during spring and early summer, but it can just be used for pre-cooling in the rest of summer and autumn seasons. Moreover, a database was developed about the temperatures of the soil, external air and at the outlet of the device which may be useful for researchers in the future.

Keywords: 

air-ground heat exchange, buried pipe, energy performance, soil temperature

1. Introduction
2. Experimentation
3. Results and Discussion
4. Conclusions
Acknowledgement
Nomenclature
  References

[1] Bouhess H, Hamdi H, Benhamou B, Bennouna A, Hollmuller P, Limam K. (2013). Dynamic simulation of an earth-to-air heat exchanger connected to a villa type house in Marrakech. 13th Conference of International Building Performance Simulation Association, Chambéry, France.

[2] Florides G, Kalogirou S. (2007). Ground heat exchangers - A review of systems, models and applications. Renewable Energy 32: 2461-2478. https://doi.org/10.1016/j.renene.2006.12.014

[3] Peretti C, Zarrella A, De Carli M, Zecchin R. (2013). The design and environmental evaluation of earth-to-air heat exchangers (EAHE). A literature review. Renewable and Sustainable Energy Reviews 28: 107-116. https://doi.org/10.1016/j.rser.2013.07.057

[4] Ozgener L. (2011). A review on the experimental and analytical analysis of earth to air heat exchanger (EAHE) systems in Turkey. Renewable and Sustainable Energy Reviews 15: 4483–4490. https://doi.org/10.1016/j.rser.2011.07.103

[5] Thiers S. (2008). Bilans énergétiques et environnementaux de batiments à énergie positive. Thesis in L’Ecole Nationale Supérieure des Mines. Paris, pp. 255.

[6] Al-Ajmi F, Loveday D, Hanby VI. (2006). The cooling potential of earth-air heat exchangers for domestic buildings in a desert climate. Building and Environment 41: 235-244. https://doi.org/10.1016/j.buildenv.2005.01.027

[7] Bansal V, Misra R, Agrawal GD, Mathur J. (2010). Performance analysis of earth-pipe-air heat exchanger for summer cooling. Energy and Buildings 42: 645-648. https://doi.org/10.1016/j.enbuild.2009.11.001

[8] Bansal V, Mishra R, Agarwal GD, MathurJ. (2012). Performance analysis of integrated earth-air-tunnel-evaporative cooling system in hot and dry climate. Energy and Buildings 47: 525-532. https://doi.org/10.1016/j.enbuild.2011.12.024rg

[9] Alghannam A. R. O. (2012). Investigations of performance of earth tube heat exchanger of sandy soil in hot arid climate. Journal of Applied Sciences Research 8: 3044-3052.

[10] Misra R, Bansal V, Agrawal GD, Mathur J, Aseri T. (2013). Transient analysis based determination of derating factor for earth air tunnel heat exchanger in winter. Energy and Buildings 58: 76-85. https://doi.org/10.1016/j.enbuild.2012.12.002

[11] Moummi N, Benfatah H, Hatraf N, Moummi A, Ali SY. (2010). Le rafraîchissement par la géothermie: étude théorique et expérimentale dans le site de Biskra. Revue des Energies Renouvelables 13: 399-406. 

[12] Dehina K, Mokhtari AM. (2012). Simulation numérique d’un échangeur air-sol-eau à co-courant. XXXe Rencontres AUGC-IBPSA, Chambéry, Savoie.

[13] Sehli A, Hasni A, Tamali M. (2012). The potential of earth-air heat exchangers for low energy cooling of buildings in South Algeria. Energy Procedia 18: 496-506. https://doi.org/10.1016/j.egypro.2012.05.061

[14] Mebarki B, Draoui B, Abdessemed S, Keboucha A, Drici S, Sahli A. (2012). Etude d’un système de climatisation intégrant un puits canadien dans les zones arides, cas de Béchar. Revue des Energies Renouveables 15: 465-478.

[15] Benhammou M, Draoui B. (2012). Simulation et caractérisation d’un échangeur géothermique à air destiné au rafraîchissement des bâtiments fonctionnant dans les conditions climatiques du sud de l’Algérie. Revue des Energies Renouvelables 15: 275-284.

[16] Belloufi Y, Brima A, Zerouali S, Atmani R, Aissaoui F, Rouag A, Moummi N. (2010). Numerical and experimental investigation on the transient behavior of an earth air heat exchanger in continuous operation mode. International Journal of Heat and Technology 35(2): 279-288. https://doi.org/10.18280/ijht.350208 

[17] Rouag A, Benchabane A, Labed A, Belhadj K, Boultif N. (2016). Applicability of a solar adsorption cooling machine in semiarid regions: Proposal of supplementary cooler using earth-water heat exchanger. International Journal of Heat and Technology 34(2): 281-286. https://doi.org/10.18280/ijht.340218

[18] Saadeddine M. (2014). Identification et analyse des principaux facteurs influant le comportement thermique d'un échangeur air/sol enterré. Thesis in Département de Génie mécanique université de Biskra.

[19] Mihalakakou G. (2002). On estimating soil surface temperature profiles. Energy and Buildings 34: 251-259. https://doi.org/10.1016/S0378-7788(01)00089-5

[20] Ozgener O, Ozgener L, Tester JW. (2013). A practical approach to predict soil temperature variations for geothermal (ground) heat exchangers applications. Heat and Mass Transfer 62: 473-480. https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.031

[21] Benhammou M, Draoui B. (2011). Modélisation de la température en profondeur du sol pour la région d’Adrar - Effet de la nature du sol. Revue des Energies Renouvelables14: 219-228.

[22] Hollmuller P, Lachal B. (2014). Air-soil heat exchangers for heating and cooling of buildings: Design guidelines, potentials and constraints, system integration and global energy balance. Applied Energy 119: 476-487. https://doi.org/10.1016/j.apenergy.2014.01.042

[23] Vaz J, Sattler MA, Brum RDS, dos Santos ED, Isoldi LRA. (2014). An experimental study on the use of Earth-Air Heat Exchangers (EAHE). Energy and Buildings 72: 122-131. https://doi.org/10.1016/j.enbuild.2013.12.009

[24] Sofia D, Giuliano A. (2018). Air quality monitoring network for tracking pollutants: The case study of Salerno City center. Chemical Engineering Transactions 68: 67-72. https://doi.org/10.3303/CET1868012

[25] Nazira A, Zainal A. (2017). Graphical user interface application in matlab environment for water and air quality process monitoring. Chemical Engineering Transactions 56: 97-102. https://doi.org/10.3303/CET1756017