Experimental study of aero-thermal heat sink performances subjected to impinging air flow

Experimental study of aero-thermal heat sink performances subjected to impinging air flow

Abdelillah A. Belarbi M'hamed Beriache  Ahmed Bettahar 

Laboratoire de Rhéologie et mécanique, Department of Mechanical Engineering, Faculty of Technology, University Hassiba Benbouali of Chlef, 02000, Algeria

Laboratoire de Contrôles, Essais, Mesures et Simulations Mécaniques, Department of Mechanical Engineering, Faculty of Technology, University Hassiba Benbouali of Chlef, 02000, Algeria

Corresponding Author Email: 
a.belarbi@univ-chlef.dz
Page: 
1310-1317
|
DOI: 
https://doi.org/10.18280/ijht.360420
Received: 
20 July 2018
| |
Accepted: 
24 December 2018
| | Citation

OPEN ACCESS

Abstract: 

In this study, experimental investigation of thermal and aerodynamic performances of a rectangular mini-channel heat sink subjected to an impinging air jet was carried out with the aim to improve the cooling performance of personal computer CPUs. The influence of the impinging distance on the velocity profile, the pressure drop, the case temperature, the thermal resistance, and the heat transfer coefficient are studied. Moreover, the effect of the positioning of the microprocessor (heat source) on the thermal performance was investigated. The results show a ratio "height jet/diameter" Y/D=0.606 offer a better cooling, and a longitudinal displacement of the heat source (central processor unit) 10 mm from the original position (center) improve the cooling performance. The enhancement rate was in a range of 10% compared to the initial position (central position before shifting the source).

Keywords: 

heat sink, impinging air jet, cooling, case temperature, thermal resistance, pressure drop

1. Introduction
2. Experimental Equipment
3. Experimental Methodologies
4. Results and Discussion
5. Conclusion
Nomenclature
  References

[1] Li HY, Chen CL, Chao SM, Liang GF. (2013). Enhancing heat transfer in a plate-fin heat sink using delta winglet vortex generators. International Journal of Heat and Mass Transfer 67: 666-677. https://doi.org/10.1016/j.ijheatmasstransfer.2013.08.042

[2] Huang CH, Chen YH. (2013). An impingement heat sink module design problem in determining optimal non-uniform fin widths. International Journal of Heat and Mass Transfer 67: 992-1006. https://doi.org/10.1016/j.ijheatmasstransfer.2013.08.103

[3] Brignoni LA, Garimella SV. (1999). Experimental optimization of confined air jet impingement on a pin-fin heat sink. IEEE Trans. Compon. Pack. Technol 22: 399-404. https://doi.org/10.1109/6144.796542

[4] El-Sheikh HA, Garimella SV. (2000). Enhancement of air impingement heat transfer using pin-fin heat sinks. IEEE Trans. Compon. Pack. Technol. 23(2): 300-328. https://doi.org/10.1109/6144.846768

[5] Maveety JG, Hendricks JG. (1999). A heat sink performance study considering material, geometry. Reynolds number with air impingement. J. Electron. Packag 121: 156-161. https://doi.org/10.1115/1.2792678

[6] Maveety JG, Jung HH. (2002). Heat transfer from square pin-fin heat sinks using air impingement cooling. IEEE Trans. Compon. Pack. Technol. 25: 459-469. https://doi.org/10.1109/TCAPT.2002.803650

[7] Biber CR, Fijol S. (1999). Fan-plus-heatsink optimization– mechanical and thermal design with reality. Proceedings of the International Systems Packaging Symposium 285-289.

[8] Sathe SB, Sammakia BG. (2004). An analytical study of the optimized performance of an impingement heat sink. J. Electron. Packaging 126: 528-534. https://doi.org/10.1115/1.1827269

[9] Duan ZP, Muzychka YS. (2004). Impingement air cooled plate fin heat sinks Part II- Thermal resistance model. Proceedings of 9th Int. Soc. Conf. Therm. Phnom. Electronic Syst 36-443: https://doi.org/10.1109/ITHERM.2004.1319207

[10] Duan ZP, Muzychka YS. (2004). Impingement air cooled plate fin heat sinks Part I-pressure drop model. Proceedings of 9th Int. Soc. Conf. Therm. Phenom. Electronic Syst 429-435. https://doi.org/10.1109/ITHERM.2004.1319206

[11] Li HY, Chen KY. (2007). Thermal performance of plate-fin heat sinks under confined impinging jet conditions. International Journal of Heat and Mass Transfer 50: 1963-1970. https://doi.org/10.1016/j.ijheatmasstransfer.2006.09.024

[12] Li HY, Chen KY, Chiang MH. (2009). Thermal-fluid characteristics of plate-fin heat sinks cooled by impingement jet. Energy Conversion and Management 50: 2738-2746. https://doi.org/10.1016/j.enconman.2009.06.030

[13] Li HY, Chao SM, Tsai GL. (2005). Thermal performance measurement of heat sinks with confined impinging jet by infrared thermography. International Journal of Heat and Mass Transfer 48: 5386-5394. https://doi.org/10.1016/j.ijheatmasstransfer.2005.07.007

[14] Kim DK, Kim JK, Bae JK. (2009). Comparison of thermal performances of plate-fin and pin-fin heat sinks subject to an impinging flow. International Journal of Heat and Mass Transfer 52: 3510-3517. https://doi.org/10.1016/j.ijheatmasstransfer.2009.02.041

[15] Diani A, Mancin S, Zilio C, Rossetto L. (2013). An assessment on air forced convection on extended surfaces. Experimental results and numerical modeling. International Journal of Thermal Sciences 67: 120-134. https://doi.org/10.1016/j.ijthermalsci.2012.11.012

[16] Mesalhy OM, El‑Sayed MM. (2015). Thermal performance of plate fin heat sink cooled by air slot impinging jet with different cross sectional area. Heat Mass Transfer 51: 889-899. https://doi.org/10.1007/s00231-014-1463-5

[17] Camaraza-Medina Y, Rubio-Gonzales ÁM, Cruz-Fonticiella OM, García-Morales OF. (2018). Simplified analysis of heat transfer through a finned tube bundle in air cooled condenser. Mathematical Modelling of Engineering Problems 5(3): 237-242. https://doi.org/10.18280/mmep.050316

[18] Camaraza-Medina Y, Khandy NH, Carlson KM, Cruz Fonticiella OM, García-Morales OF, Reyes-Cabrera D. (2018). Evaluation of condensation heat transfer in air-cooled condenser by dominant flow criteria. Mathematical Modelling of Engineering Problems 5(2): 76-82. https://doi.org/10.18280/mmep.050204

[19] HoSung L. (2011). Thermal design. John Wiley & Sons, Inc.

[20] Naik S, Probert SD, Shilston MJ. (1987). Forced-convective steady-state heat transfers from shrouded vertical fin arrays, aligned parallel to an undisturbed air-stream. Appl. Energy 26(2): 137-158. https://doi.org/10.1016/0306-2619(87)90015-8

[21] Al-Damook A, Kapur N, Summers JL, Thompson HM. (2015). An experimental and computational investigation of thermal air flows through perforated pin heat sinks. Applied Thermal Engineering 89: 365-376. https://doi.org/10.1016/j.applthermaleng.2015.06.036

[22] Holman JP. (2011). Experimental methods for engineers. eighth ed., McGraw Hill Book Company.

[23] Incropera. (2007). Dewitt, Bergman, and Lavine., Fundamentals of Heat and Mass Transfer, 6th ed.

[24] Taji SG, Parishwad GV, Sane NK. (2014). Enhanced performance of horizontal rectangular fin array heat sink using assisting mode of mixed convection. International Journal of Heat and Mass Transfer 72: 250-25. https://doi.org/10.1016/j.ijheatmasstransfer.2014.01.012

[25] Beriache M, Bettahar A, Loukarfi L. (2012). Fluid flow and thermal characteristics of a minichannel heat sink with impinging air flow. Arab J Sci Eng 37: 2243-2254. https://doi.org/10.1007/s13369-012-0321-3

[26] Belarbi AA, Beriache M, Bettahar A. (2015). Caractérisation expérimentale des performances d'un dissipateur de chaleur à mini-canaux. Proceedings du Congrès Français de Thermique, La Rochelle, France, p. 13.