Impact of the grooves on the enhancement of heat transfer in an annular space of a rotor-stator

Impact of the grooves on the enhancement of heat transfer in an annular space of a rotor-stator

Attou Youcef Dellil A. Zineddine  Meghdir Abed 

Department ELM, Institute of Maintenance and Industrial Safety, University of Mohamed Ben Ahmed Oran 2, Algeria

Corresponding Author Email: 
attouyoucef27@gmail.com
Page: 
1283-1291
|
DOI: 
https://doi.org/10.18280/ijht.360417
Received: 
16 August 2017
| |
Accepted: 
6 March 2018
| | Citation

OPEN ACCESS

Abstract: 

This work concerns a numerical study of heat transfer by convection in an annulo-cylindrical space of an axial air flow between a rotor rotating at constant angular velocity and a fixed stator. We used the Fluent software to simulate the thermal influence on the groove. We propose to study four geometric configurations of the rotor and stator. The first is to take the surfaces of the rotor and the stator as smooth. In the second configuration, the stator wall is grooved along the cylinder and the rotor is smooth. For the third, it is considered that the rotor and the stator are provided with grooves of the same geometrical shape as regards the last case; it is only on the rotor that the same types of grooves are considered. The numerical results obtained in rotational flow for different rotational speeds of the rotor and for different air injection rates through grooves of different depth values have shown that the presence of grooves enhances the heat transfer at as speed increases. In the presence of an axial flow of air, the results obtained in a turbulent flow show that the case of the grooved rotor is interesting from the thermal point of view with respect to the others (smooth, grooved stator, and grooved rotor-stator). This numerical study is based on the use of an SST (Shear-Stress-Transport) type turbulence model to evaluate heat exchanges in the various rotor-stator configurations.

Keywords: 

grooves, shear stress transport model, turbulence, heat transfer, ANSYS fluent code

1. Introduction
2. Numerical Model
3. Results and Discussion
4. Conclusion
Nomenclature
  References

[1] Taylor GI. (1923). Stability of viscous fluid between two rotating cylinders. Phil. Trans. Roy. Soc, London 223, 289-343.

[2] Gazley C. (1958). Heat-transfer characteristics of the rotational and axial flow between concentric cylinders. Transactions of the ASME 80(1): 79-90.

[3] Becker KM, Kaye J. (1962). Measurements of adiabatic flow in an annulus with an inner rotating cylinder. Journal of Heat Transfer 84(2): 97-105.

[4] Aoki H, Nohira H, Arai H. (1967). Convective heat transfer in an annulus with an inner rotating cylinder. Bulletin of JSME 10(39): 523. http://dx.doi.org/10.1299/jsme1958.10.523

[5] Tachibana F, Fukui S. (1964). Convective heat transfer of the rotational and axial flow between two concentric cylinders. Bulletin of JSME 7(26): 385. http://dx.doi.org/10.1299/jsme1958.7.385

[6] Ball KS, Farouk B, Dixit VC. (1989). An experimental study of heat transfer in a vertical annulus with a rotating inner cylinder. International Journal of Mass Transfer 32(8): 1517-1527. http://dx.doi.org/10.1016/0017-9310(89)90073-2

[7] Lee YN, Minkowycz WJ. (1989). Heat transfer characteristics of the annulus of two-coaxial cylinders with one cylinder rotating. International Journal of Heat and Mass Transfer 32(4): 711-722.

[8] Pellé J, Harmand S. (2009). Heat transfer study in a rotor stator system air gap with an axial inflow. Applied Thermal Engineering, Elsevier 29(8-9): 1532-1543. http://dx.doi.org/10.1016/j.applthermaleng.2008.07.014

[9] Pellé J, Harmand S. (2007). Heat transfer measurements in an opened rotor–stator system air-gap. Experimental Thermal and Fluid Science 31(3): 165-180.http://dx.doi.org/10.1016/j.expthermflusci.2006.0 .018

[10] Andersson H, Lygren M. (2006). LES of open rotor–stator flow. International Journal of Heat and Fluid Flow 27(4): 551-557. http://dx.doi.org/10.1016/j.ijheatfluidflow.2006.02.030

[11] Haddadi S, Poncet S. (2008). Turbulence modeling of torsional Couette flows. International Journal of Rotating Machinery 2008: 1-27. http://dx.doi.org/10.1155/2008/635138

[12] Gazley C. (1992). Heat transfer characteristics of rotating and axial flow between concentric cylinders, Trans. ASME. Journal of Heat Transfer 114:589-597.

[13] Gardiner SRM, Sabersky RH. (1978). Heat transfer in an annular gap. International Journal of Heat and Mass Transfer 21(12): 1459-1466. http://dx.doi.org/10.1016/0017-9310(78)90002-9

[14] Bouafia M, Bertin Y, Saulnier JB, Ropert P. (1998). Analyse expérimentale des transferts de chaleur en espace annulaire étroit et rainuré avec cylindre intérieur tournant. International Journal of Heat and Mass Transfer 41(10): 1279-1291. http://dx.doi.org/10.1016/S0017-9310(97)00317-7

[15] Peres I, Ziouchi A, Bertin Y. (1994). Caractérisation des échanges de chaleur dans un espace annulaire encoché ou lisse avec le cylindre intérieur tournant. Congrès SFT, 170-177.

[16] Bouafia M, Ziouchi A, Bertin Y, Saulnier JB. (1999). Etude expérimentale et numérique des transferts de chaleur en espace annulaire sans débit axial et avec cylindre intérieur tournant. International Journal of Thermal Sciences 38(7): 547-559. http://dx.doi.org/10.1016/S0035-3159(99)80035-X

[17] Fénot M, Bertin Y, Dorignac E, Lalizel G (2011). A review of heat transfer between concentric rotating cylinders with or without axial flow. International Journal of Thermal Sciences 50(7): 1138-1155. https://doi.org/10.1016/j.ijthermalsci.2011.02.013

[18] Neti S, Warnock AS, Levy EK, Kannan KS. (1985). Computation of laminar heat transfer in rotating rectangular ducts. Journal of Heat Transfer 107(3): 575-582. http://dx.doi.org/10.1115/1.3247463

[19] Levy E, Neti S, Brown G, Bayat F, Kadambi V. (1986). Laminar heat transfer and pressure drop in a rectangular duct rotating about a parallel axis. Journal of Heat Transfer 108(1): 350-356. http://dx.doi.org/10.1115/1.3246928

[20] Soong CY, Yan WM. (1999). Development of secondary flow and convective heat transfer in isothermal/iso-flux rectangular ducts rotating about a parallel axis. International Journal of Heat and Mass Transfer 42(3): 497-510. http://dx.doi.org/10.1016/S0017-9310(98)00199-9

[21] Micallef C, Pickering SJ, Simmons K, Bradley K.  (2005). Improvements in air flow in the end region of a large totally enclosed fan cooled induction motor. IEEE International Conference on Electric Machines and Drives, pp. 579-584. http://dx.doi.org/10.1109/IEMDC.2005.195781

[22] Jeng TM, Tzeng SC, Lin CH. (2007). Heat transfer enhancement of Taylor–Couette–Poiseuille flow in an annulus by mounting longitudinal ribs on the rotating inner cylinder. International Journal of Heat and Mass Transfer 50(1-2): 381-390. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2006.06.005

[23] Romanazzi P, Howey DA. (2015). Air-gap convection in a switched reluctance machine. Tenth International Conference on Ecological Vehicles and Renewable Energies, pp. 1-7.

[24] Poncet S, Haddadi S, Viazzo S. (2010). Numerical modeling of fluid flow and heat transfer in a narrow Taylor-Couette-Poiseuille system. International Journal of Heat and Fluid Flow 32(1): 128-144. http://dx.doi.org/10.1016/j.ijheatfluidflow.2010.08.003

[25] Lancial N, Torriano F, Beaubert F, Harmand S, Rolland G. (2014). Study of a Taylor-Couette-Poiseuille flow in an annular channel with a slotted rotor. International Conference on Electrical Machines, Berlin, pp. 1416-1423. http://dx.doi.org/10.1109/ICELMACH.2014.6960368

[26] Gilchrist S, Ching CY, Ewing D. (2005). Heat transfer enhancement in axial Taylor-Couette flow. ASME Summer Heat Transfer Conference, San Francisco, USA, pp. 17-22. http://dx.doi.org/10.1115/HT2005-72746

[27] Fénot M, Dorignac E, Giret A, Lalizel G. (2013). Convective heat transfer in the entry region of an annular channel with slotted rotating inner cylinder. Applied Thermal Engineering 54(1): 345-358. http://dx.doi.org/10.1016/j.applthermaleng.2012.10.039

[28] Lancial N, Torriano F, Beaubert F, Harmand S. (2017). Taylor-Couette-Poiseuille flow and heat transfer in an annular channel with a slotted rotor. International Journal of Thermal Sciences 112: 92-103. http://dx.doi.org/10.1016/j.ijthermalsci.2016.09.022

[29] Menter FR. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal 32(8): 1598-1605. http://dx.doi.org/10.2514/3.12149

[30] Wilcox DC. (2006). Turbulence Modeling for CFD. DCW Industries, 3rd edition.

[31] Patankar S, Spalding D. (1972). A calculation procedure for heat, mass and momentum transfer in three dimensional parabolic flows. International Journal of Heat and Mass Transfer 15: 1787-806. http://dx.doi.org/10.1016/0017-9310(72)90054-3