Experimental investigation and exergy analysis of an air heater with a solar concentrator used for drying processes

Experimental investigation and exergy analysis of an air heater with a solar concentrator used for drying processes

Housseyn KarouaAbdelhafid Moummi Abderrahmane Hamidat Noureddine Moummi Kamel Aoues Adel Benchabane Ahmed Benchatti 

Centre de Développement des Energies Renouvelables, CDER, Algiers 16340, Algeria

Laboratory of Civil engineering, Hydraulics, Sustainable development and Environment (LAR-GHYDE), University of Biskra 07000, Algeria

Laboratoire de Génie Mécanique (LGM), Université de Biskra BP 145, Biskra 07000, Algeria

Laboratoire de Génie Energétique et Matériaux (LGEM) Biskra, Biskra 07000, Algeria

Laboratoire de Génie Mécanique, Université d’Amar Telidji, Laghouat 07000, Algeria

Corresponding Author Email: 
h.karoua@cder.dz
Page: 
791-800
|
DOI: 
https://doi.org/10.18280/ijht.360303
Received: 
20 Febraury 2018
| |
Accepted: 
5 September 2018
| | Citation

OPEN ACCESS

Abstract: 

In this paper, a solar air heater collector is developed and investigated. A concentrating feature of Linear Fresnel Reflector and the characteristics of flat plate air heaters (LFRAH) collectors are used. In this experimental study, three configurations of the absorber used to improve the thermal performance of LFRAH for the drying and the space heating processes, where two configurations of the absorber plate have different types of artificial roughness and the third configuration has a smooth absorber. The measured parameters are the ambient temperature, inlet and outlet temperatures of the air heater, the temperatures of the absorber, and the solar radiation intensity. The measurements performed at the same values of mass flow rate, 0.018 (kg.s-1). The introduction of the artificial roughness at the absorber plate allows having average air temperatures greater than 100° C. The comparison of the thermal efficiency shows that the roughened absorbers improve the thermal efficiency by 62% compared to the smooth absorber.

Keywords: 

solar concentration, air heater, rectangular duct, exergy, experimental study

1. Introduction
2. Materials and Methods
3. Modeling Analysis
4. Case Studies
5. Description of the Experimental Device
6. Uncertainty Analysis
7. Experimental Results and Discussion
8. Conclusion
Acknowledgements

The authors are very thankful to everyone who contributed to the completion of this study, especially mention, M. Saber Guenifi (Engineering on Mechanical at the University of Mohamed Khider of Biskra) and M. Mohammed Taher Baissi (Master on Mechanical at the University of Mohamed Khider of Biskra) for their technical assistance.

Nomenclature
  References

[1] JORADP. (2010). Official Journal of the People's Democratic Republic of Algeria. Law n ° 10-95 of 17 March 2010 laying down the economic rules for network connection fees and other actions necessary to satisfy electricity and gas demand from customers. https://www.joradp.dz/FTP/jo-francais/2010/F2010019.pdf 

[2] Eddine BT, Salah MM. (2012). Solid waste as renewable source of energy: current and future possibility in Algeria. International Journal of Energy Environmental Engineering 3(1): 17. https://doi.org/10.1186/2251-6832-3-17

[3] Missoum M, Hamidat A, Loukarfi L, Abdeladim K. (2014). Impact of rural housing energy performance improvement on the energy balance in the North-West of Algeria. Energy and Buildings 85: 374-388.

[4] Stambouli AB. (2011). Promotion of renewable energies in Algeria: strategies and perspectives. Renewable and Sustainable Energy Reviews 15: 1169-1181. https://doi.org/10.1016/j.rser.2010.11.017

[5] MEM (Ministère de l’énergie et des mines). (2015). Agence Nationale pour la Promotion et Rationalisation de l’Utilisation de l’énergie (APRUE), Energy Efficiency Development Program until 2030. www.aprue.org.dz

[6] Cagnoli M, Mazzei D, Procopio M, Russo V, Savoldi L, Zanino R. (2018). Analysis of the performance of linear Fresnel collectors: Encapsulated vs. evacuated tubes. Solar Energy 164: 119-138. https://doi.org/10.1016/j.solener.2018.02.037

[7] Cucumo MA, Ferraro V, Kaliakatsos D, Mele M, Nicoletti. F. (2017). Law of motion of reflectors for a linear Fresnel plant. International Journal of Heat and Technology 35: S78-S86. https://doi.org/10.18280/ijht.35Sp0111

[8] Zhu G. (2017). New adaptive method to optimize the secondary reflector of linear Fresnel collectors. Solar Energy 144: 117-126. https://doi.org/10.1016/j.solener.2017.01.005

[9] Chaitanya Prasad GS, Reddy KS, Sundararajan T. (2017). Optimization of solar linear Fresnel reflector system with secondary concentrator for uniform flux distribution over absorber tube. Solar Energy 150: 1-12. http://dx.doi.org/10.1016/j.solener.2017.04.026

[10] Regue MH, Benchatti T, Medjelled A, Benchatti A. (2014). Improving the performances of a solar cylindrical parabolic dual reflection Fresnel miror (experimental part). International Journal of Heat and Technology. 32(1-2): 171-178. 

[11] Moghimi MA, Craig KJ, Meyer JP. (2015). Optimization of a trapezoidal cavity absorber for the Linear Fresnel Reflector. Solar Energy 119: 343-361. http://dx.doi.org/10.1016/j.solener.2015.07.009

[12] Zhu G, Wendelin T, Wagner MJ, Kutscher C. (2014). History, current state, and future of linear Fresnel concentrating solar collectors. Solar Energy 103: 639-652. http://dx.doi.org/10.1016/j.solener.2013.05.021

[13] Sharma V, Nayak JK, Kedare S. B. (2015). Effects of shading and blocking in linear Fresnel reflector field. Solar Energy 113: 114-138. http://dx.doi.org/10.1016/j.solener.2014.12.026

[14] Lin M, Sumathy K, Dai YJ, Wang RZ, Chen Y. (2013). Experimental and theoretical analysis on a linear Fresnel reflector solar collector prototype with V-shaped cavity receiver. Applied Thermal Engineering 51(1): 963-972. https://doi.org/10.1016/j.applthermaleng.2012.10.050

[15] Mathur SS, Kandpal TC, Negi BS. (1991). Optical design and concentration characteristics of linear Fresnel reflector solar concentrators—II. Mirror elements of equal width. Energy Conversion and Management 31(3): 221-232. https://doi.org/10.1016/0196-8904(91)90076-U

[16] Goswami RP, Negi BS, Sehgal HK, Sootha GD. (1990). Optical designs and concentration characteristics of a linear Fresnel reflector solar concentrator with a triangular absorber. Solar Energy Materials 21(2): 237-251. http://dx.doi.org/10.1016/0165-1633(90)90057-8

[17] Negi BS, Kandpal TC, Mathur SS. (1990). Designs and performance characteristics of a linear Fresnel reflector solar concentrator with a flat vertical absorber. Solar & Wind Technology 7(4): 379-392. http://dx.doi.org/10.1016/0741-983X(90)90023-U

[18] Cucumo M, Ferraro V, Kaliakatsos D, Mele M, Nicoletti F. (2016). Calculation model using finite-difference method for energy analysis in a concentrating solar plant with linear Fresnel reflectors. International Journal of Heat Technology 34: S337-S345. https://doi.org/10.18280/ijht.34S221

[19] Feuermann D, Gordon J. (1991). Analysis of a two-stage linear Fresnel reflector solar concentrator. Journal of Solar Energy Engineering 113(4): 272-279. http://dx.doi.org/10.1115/1.2929973

[20] Mills DR, Morrison GL. (2000). Compact linear Fresnel reflector solar thermal power plants. Solar Energy 68(3): 263-283. https://doi.org/10.1016/S0038-092X(99)00068-7

[21] Barbón A, Barbón N, Barbón L, Otero JA. (2016). Theoretical elements for the design of a small scale Linear Fresnel Reflector: Frontal and Lateral views. Solar Energy 132: 188-202. https://doi.org/10.1016/j.solener.2016.02.054

[22] Montes MJ, Barbero R, Abbas R, Rovira A. (2016). Performance model and thermal comparison of different alternatives for the Fresnel single-tube receiver. Applied Thermal Engineering 104(Supplement C): 162-175. https://doi.org/10.1016/j.applthermaleng.2016.05.015

[23] Wang G, Chen Z, Hu P, Cheng X. (2016). Design and optical analysis of the band-focus Fresnel lens solar concentrator. Applied Thermal Engineering 102(Supplement C): 695-700. https://doi.org/10.1016/j.applthermaleng.2016.04.030

[24] Xu G, Song G, Zhu X, Gao W, Li H, Quan Y. (2015). Performance evaluation of a direct vapor generation supercritical ORC system driven by linear Fresnel reflector solar concentrator. Applied Thermal Engineering 80(Supplement C): 196-204. https://doi.org/10.1016/j.applthermaleng.2014.12.071

[25] Pino FJ, Caro R, Rosa. F, Guerra J. (2013). Experimental validation of an optical and thermal model of a linear Fresnel collector system. Applied Thermal Engineering 50(2): 1463-1471. https://doi.org/10.1016/j.applthermaleng.2011.12.020

[26] Abbas R, Martínez-Val JM. (2015). Analytic optical design of linear Fresnel collectors with variable widths and shifts of mirrors. Renewable Energy 75: 81-92. http://dx.doi.org/10.1016/j.renene.2014.09.029

[27] Abbas R, Martínez-Val JM. (2017). A comprehensive optical characterization of linear Fresnel collecto RS by means of an analytic study. Applied Energy 185: 1136-1151. http://dx.doi.org/10.1016/j.apenergy.2016.01.065

[28] Abbas R, Muñoz-Antón J, Valdés M, Martínez-Val JM. (2013). High concentration linear Fresnel reflectors. Energy Conversion and Management 72: 60-68. http://dx.doi.org/10.1016/j.enconman.2013.01.039

[29] Abbas R, Montes MJ, Piera M, Martínez-Val J. (2012). Solar radiation concentration features in Linear Fresnel Reflector arrays. Energy Conversion and Management 54(1): 133-144. http://dx.doi.org/10.1016/j.enconman.2011.10.010

[30] Singh PL, Sarviya RM, Bhagoria JL. (2010). Thermal performance of linear Fresnel reflecting solar concentrator with trapezoidal cavity absorbers. Applied Energy 87(2): 541-550. http://dx.doi.org/10.1016/j.apenergy.2009.08.019

[31] Velázquez N, García-Valladares O, Sauceda D, Beltrán R. (2010). Numerical simulation of a Linear Fresnel Reflector Concentrator used as direct generator in a Solar-GAX cycle. Energy Conversion and Management 51(3): 434-445. http://dx.doi.org/10.1016/j.enconman.2009.10.005

[32] Esen H. (2008). Experimental energy and exergy analysis of a double-flow solar air heater having different obstacles on absorber plates. Building and Environment 43(6): 1046-1054. http://dx.doi.org/10.1016/j.buildenv.2007.02.016

[33] Pujol Nadal R, Martínez Moll V. (2014). Optical characterization of a fixed mirror solar concentrator prototype by the ray-tracing procedure. Journal of Renewable and Sustainable Energy 6(4): 043105. http://dx.doi.org/10.1063/1.4890219

[34] Martinez-Rodriguez G, Fuentes-Silva AL, Picon-Nunez M. (2018). Targeting the maximum outlet temperature of solar collectors. Chemical Engineering Transactions 70: 1567-1572. https://doi.org/10.3303/CET1870262

[35] Alam T, Kim MH. (2017). Performance improvement of double-pass solar air heater – A state of art of review. Renewable and Sustainable Energy Reviews 79(Supplement C): 779-793. https://doi.org/10.1016/j.rser.2017.05.087

[36] Karoua H, Debbache M, Takilalte A, Mahfoud O, Moummi A, Moummi N, Aoues K. (2016). An experimental study of a new solar air heater with a linear fresnel reflector. International Renewable and Sustainable Energy Conference (IRSEC), pp. 104-108. https://doi.org/10.1109/IRSEC.2016.7983949

[37] Sing CKL, Lim JS, Walmsley TG, Liew PY, Goto M. (2018). Effect of solar utility temperature to costing and design parameters of integrated solar thermal system. Chemical Engineering Transactions 70: 139-144. https://doi.org/10.3303/CET1870024

[38] Chouksey VK, Sharma SP. (2016). Investigations on thermal performance characteristics of wire screen packed bed solar air heater. Solar Energy 132(Supplement C): 591-605. https://doi.org/10.1016/j.solener.2016.03.040

[39] Bekele A, Mishra M, Dutta S. (2014). Performance characteristics of solar air heater with surface mounted obstacles. Energy Conversion and Management 85(Supplement C): 603-611. https://doi.org/10.1016/j.enconman.2014.04.079

[40] Labed A, Moummi N, Benchabane A, Aoues K, Moummi A. (2012). Performance investigation of single-and double-pass solar air heaters through the use of various fin geometries. International Journal of Sustainable Energy 31(6): 423-434. http://dx.doi.org/10.1080/14786451.2011.590899

[41] Youcef-Ali S. (2005). Study and optimization of the thermal performances of the offset rectangular plate fin absorber plates, with various glazing. Renewable Energy 30(2): 271-280. http://dx.doi.org/10.1016/j.renene.2004.04.009

[42] Mahfoud O, Moummi A, Kadja M, Moummi N, Mebrouk R. (2015). Dynamic and thermal study of air flow control by chicanes with inclined upper parts in solar air collectors. International Journal of Sustainable Energy 34(2): 113-127. http://dx.doi.org/10.1080/14786451.2013.821125

[43] Varun Saini RP, Singal SK. (2007). A review on roughness geometry used in solar air heaters. Solar Energy 81(11): 1340-1350. http://dx.doi.org/10.1016/j.solener.2007.01.017

[44] Karim MA, Hawlader MNA. (2004). Development of solar air collectors for drying applications. Energy Conversion and Management 45(3): 329-344. https://doi.org/10.1016/S0196-8904(03)00158-4

[45] Labed A, Moummi N, Benchabane A. (2012). Experimental investigation of various designs of solar flat plate collector: Application for the drying of green chili. Renewable and Sustainable Energy 4: 043116-15. http://dx.doi.org/10.1063/1.4742337

[46] Youcef-Ali S. (2001). Étude numérique et expérimentale des séchoirs solaires indirects à convection forcée. Energetic, Univ. of Valenciennes et de Hainaut-Ambresis, N° d'order 01-05.

[47] Duffie JA, Beckman WA. (2013). Solar engineering of thermal processes. John Wiley & Sons.