Circular heat and solute source within a viscoplastic porous enclosure: The critical source dimension for optimum transfers

Circular heat and solute source within a viscoplastic porous enclosure: The critical source dimension for optimum transfers

Karim RaguiAbdelkader Boutra Youb Khaled Benkahla  Rachid Bennacer 

Laboratory of Transfer Phenomenon, University of Sciences and Technology Houari Boumediene. Algiers, Algeria

Superior School of Applied Sciences. Algiers, Algeria

LMT - ENS Cachan, CNRS, Paris - Saclay University, 94230 Cachan, France

Corresponding Author Email: 
ragui-karim@live.fr
Page: 
761-772
|
DOI: 
https://doi.org/10.18280/ijht.360243
Received: 
13 November 2017
| |
Accepted: 
28 April 2018
| | Citation

OPEN ACCESS

Abstract: 

Through our paper, thermosolutal convection of viscoplastic materials ‘so called Bingham plastics’ which occurs into a porous matrix with an inner pollutant source has been treated numerically, in the aim to light out the impact of some relevant parameters; such Lewis and porous Rayleigh numbers; as well as the buoyancy ratio and the source dimension one; on a such conjugate phenomenon. To do so, the physical model for the momentum conservation equations is made using the Brinkman extension of the classical Darcy equation. The set of coupled equations is solved using the finite volume method and the SIMPLER algorithm. The heat and solute source within the porous space has taken a circular shape. Simply said, our pollutant source is a transport pipe which presented in 2D. To handle the latter in Cartesian Coordinates; the Cartesian Cut-Cell approach was adopted. After a careful treatment of such double-diffusive convection within the Bingham-porous space; powerful expressions that expect the mean transfer rates in such industrial geometry are set forth as a function of the governing parameters. These correlations, which predicted with ±3% the numerical results, may count as a complement to previous Newtonian-fluid researches. It is to note that the validity of the computing code was ascertained by comparing our results with experimental data and numerical ones, already available in the literature.

Keywords: 

thermosolutal convection, bingham plastics, porous medium, circular pollutant source, finite volume approach, cut-cell approach, proposed models

1. Introduction
2. Problem Statement & Mathematical Formulation
3. Numerical Procedure
4. Results & Discussion
5. Conclusion
Nomenclature
  References

[1] Nield DA, Bejan A. (1992). Convection in porous media. Springer, Berlin. http://dx.doi.org/10.1007/978-1-4757-2175-1.

[2] Mamou M, Vasseur P, Bilgen E. (1993). Multiple solution for double-diffusive convection in a vertical porous enclosure. Int. J. Heat Mass Transfer 36: 2479-2498. http://dx.doi.org/10.1016/0017-9310(94)00301-B

[3] Nithiarasu P, Seetharamo KN, Sundarajan T. (1996). Double-diffusive natural convection in an enclosure filled with fluid-saturated porous medium: A generalized Non-Darcy approach. Num. Heat Transfer Part A. 30: 413-426. http://dx.doi.org/10.1080/10407789608913848 

[4] Ostrach S. (1980). Natural convection with combined driving forces. Phys-Chem. Hydrodynamic 1(04): 233-247. http://dx.doi.org/1980PhChH.1.233O

[5] Kamotani Y, Wang LW, Ostrach S, Jiang HD. (1985). Experimental study of natural convection in shallow enclosures with horizontal temperature and concentration gradients. Int. J. Heat Mass Transfer 28: 165-173. http://dx.doi.org/1985IJHMT.28.165K

[6] Lee J, Hyun MT, Kim KW. (1988). Natural convection in confined fluids with combined horizontal temperature and concentration gradients. Int. J. Heat Mass Transfer 31(10): 1969-1977. https://doi.org/10.1016/0017-9310(88)90106-8 

[7] Benard C, Gobin D, Thevenin J. (1989). Thermosolutale natural convection in a rectangular enclosure. Numerical Results. in Heat Transfer in Convective Flows, ASME, R. K. Shah, Ed., New York, 249-254. http://dx.doi.org/1985IJHMT.28.165K

[8] Han H, Kuehn TH. (1989). A numerical simulation of double diffusive natural convection in a vertical rectangular enclosure, in Heat Transfer in Convective Flows, ASME, R.K. Shah, Ed., New York, 149-154.

[9] Chang J, Lin TF. (1993). Unsteady thermosolutal opposing convection of liquid-water mixture in a square cavity- II: Flow structure and fluctuation analysis. Int. J. Heat Mass Transfer 36: 1333-1345. https://doi.org/10.1016/S0017-9310(05)80101-2

[10] Chen F. (1993). Double-diffusive fingering convection in a porous medium. Int. J. Heat Mass Transfer 36: 793-807. https://doi.org/10.1016/0017-9310(93)80055-Y

[11] Trevisan O, Bejan A. (1987). Heat and mass transfer by high Rayleigh number convection in a porous medium heated from below. Int. J. Heat Mass Transfer 30(11): 2341-2356. https://doi.org/10.1016/0017-9310(87)90226-2

[12] Lin TF, Huang CC, Chang TS. (1990). Transient binary mixture natural convection in a square enclosure. Int. J. Heat Mass Transfer 33: 287-299. http://dx.doi.org/10.1016/0017-9310(90)90099-G

[13] Rachid B. (1993). Thermosolutal convection: fluid flow and heat transfer numerical simulations. Ph.D. Thesis, Pierre & Marie Curie, Paris.

[14] Ragui K, Boutra A, Benkahla YK. (2016). On the validity of a numerical model predicting heat and mass transfer in porous squares with a bottom thermal and solute source: Case of pollutants spreading and fuel leaks. Mech. & Ind. 17: 311. http://dx.doi.org/10.1051/meca/2015109

[15] Bingham EC. (1916). An investigation of the laws of plastic flow. Bul Bur Standards 13: 309-353. https://archive.org/details/inv133093531916278278unse 

[16] Bingham EC. (1922). Fluidity and plasticity. Mc Graw -Hill, New-York, USA. 

[17] Mitsoulis E, Tsamopoulos J. (2017). Numerical simulations of complex yield-stress fluid flows. Rheol Acta. http://dx.doi.org/10.1007/s00397-016-0981-0 

[18] Pascal H. (1983). Rheological behaviour effect of non-Newtonian fluids on steady and unsteady flow through porous media. Int. J. Num. Anal. Methods Geomech 07: 207-224. http://dx.doi.org/10.1002/nag.1610070303

[19] Amari B, Vasseur P, Bilgen E. (1994). Natural convection of non-Newtonian fluids in horizontal porous layer. Warme und Stoffubertragung 29: 185-199. https://doi.org/10.1007/BF01548603

[20] Ragui K, Boutra A, Bennacer R, Benkahla YK. (2016). Heat and mass transfer into a porous annulus found between two horizontal concentric circular cylinders. applied mechanics, behavior of materials, and engineering systems. Book Lect.Notes Mechanical Engineering, Springer. http://dx.doi.org/10.1007/978-3-319-41468-3

[21] Turan O, Poole RJ, Chakraborty N. (2010). Aspect ratio effects in laminar natural convection of Bingham fluids in rectangular enclosures with differentially heated side walls. J. Non-Newtonian Fluid Mech. 166: 208-230. https://doi.org/10.1016/j.jnnfm.2010.12.002 

[22] Turan O, Chakraborty N, Poole RJ. (2012). Laminar Rayleigh-Bénard convection of yield stress fluids in a square enclosure. J. Non Newtonian Fluid Mech. 171: 83-96. https://doi.org/10.1016/j.jnnfm.2012.01.006 

[23] Hadidi N, Ould Amer Y, Bennacer R. (2013). Bi-layered and inclined porous collector: Optimum heat and mass transfer. Energy 51: 422-430. https://doi.org/10.1016/j.energy.2013.01.012 

[24] Papanastasiou TC. (1987). Flow of materials with yeld J. Rheol. 31: 385-404. https://doi.org/10.1122/1.549926 

[25] Aniri A, Vafai K. (1994). Analysis of dispersion effects and non thermal equilibrium, non-Darcian, variable porosity incompressible flow through porous medium. Int. J. Heat Mass Tranfer 37: 939-954. http://dx.doi.org/0017-9310(93)E0019-D

[26] Noirot R. (1990). Experimental and parametric studies of soot combustion in a particulate filter: Application to Diesel exhaust gas purifying. PhD Thesis, Haute Alsace University, http://www.theses.fr/1990MULH0147

[27] Paiola J. (2017). Ecoulement d’un fluide à seuil dans un milieu poreux. Mécanique des fluides [physics.class-ph] Paris-Saclay University, France; NNT: 2017SACLS031. HAL Id: tel-01563941. https://tel.archives-ouvertes.fr/tel-01563941

[28] Glowinski R, Wachs A. (2011). On the numerical simulation of viscoplastic fluid flow. In PG Ciarlet, JL Lions (eds.), Handbook of numerical analysis. Vol. 16, Num. Meth. Non Newtonian Fluids 06: 483-717. https://doi.org/10.1016/B978-0-444-53047-9.00006-X

[29] Nebbali R, Bouhadef K. (2006). Numerical study of forced convection in a 3D flow of a non-Newtonian fluid through a porous duct. Int. J. Numer. Methods Heat & Fluid Flow 16(8): 870-889. http://dx.doi.org/10.1108/09615530610702041

[30] Ragui K, Boutra A, Bennacer R, Benkahla YK. (2018). Progress on numerical simulation of yield stress fluid flows (Part I): Correlating thermosolutal coefficients of Bingham plastics within a porous annulus of a circular shape. Int. J. Heat & Mass Transfer 126: 72-94. https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.010 

[31] Colella P, Graves DT, Keen BJ, Modiano D. (2006). A cartesian grid embedded boundary method for hyperbolic conservation laws. J. Comput. Phys. 211(1): 347-366. http://dx.doi.org/10.1016/j.jcp.2005.05.026

[32] Patankar SV. (1980). Numerical heat transfer and fluid flow. Mc Grow, New York. ISBN 10: 0891165223 / ISBN 13: 9780891165224

[33] Ragui K, Benkahla YK, Labsi N, Boutra A. (2015). Natural convection heat transfer in a differentially heated enclosure with adiabatic partitions and filled with a Bingham fluid. J. Heat Transfer Research 08: 765-783. http://dx.doi.org/10.1615/2015007477

[34] Weaver JA, Viskanta R. (1992). Natural convection in binary gases driven by combined horizontal thermal and vertical solutal gradients. Exp. Thermal Fluid Sci. 05: 57-68. https://doi.org/10.1016/0894-1777(92)90056-B

[35] Kim BS, Lee DS, Ha MY, Yoon HS. (2008). A numerical study of natural convection in a square enclosure with a circular cylinder at different vertical locations Int. J. Heat Mass Transfer 51: 1888-1906. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.06.033

[36] Sheikholeslami M, Gorji-Bandpy M, Pop I, Soheil S. (2013). Numerical study of natural convection between a circular enclosure and a sinusoidal cylinder using control volume based finite element method. Int. J. Thermal Science 72: 147-158. https://doi.org/10.1016/j.ijthermalsci.2013.05.004 

[37] Cheng P. (1985). Natural Convection in Porous Media: External Flow. in Natural Convection. Fundamentals and Applications. Edited by S. Kakac, W. Aung and R. Viskanta, Martinus Nijhoff Publisher, The Haque, The Netherlands 475-513.

[38] Beghein C, Haghighat F, Allard F. (1992). Natural study of double-diffusive natural convection in a square cavity. Int. J. Heat Mass Transfer 35-4: 833-846. https://doi.org/10.1016/0017-9310(92)90251-M

[39] Goyeau B, Songbe JP, Gobin D. (1996). Numerical study of double-diffusive natural convection in a porous cavity using the Darcy-Brinkman formulation. Int. J. Heat Mass Transfer 39-7: 1363-1378. https://doi.org/10.1016/0017-9310(95)00225-1