Thermal, effective and exergetic analysis of double flow packed bed solar air heater

Thermal, effective and exergetic analysis of double flow packed bed solar air heater

Saket Kumar Abhishek Priyam  R.K. Prasad 

Department of Mechanical Engineering, NIT Jamshedpur, Jharkhand, India

Corresponding Author Email: 
saket.gec@gmail.com
Page: 
282-292
|
DOI: 
https://doi.org/10.18280/ijht.360138
Received: 
10 July 2017
| |
Accepted: 
2 January 2018
| | Citation

OPEN ACCESS

Abstract: 

An experimental investigation has been performed to study the thermal, effective and exergetic performances of a double flow packed bed solar air heater having wire mesh as porous packing in its upper duct. The experiment is encompassed with the variables like packing bed height, mass flow rate of air and the solar radiation intensity. Experimental data has been collected for specified range of system and operating parameters to calculate the temperature rise parameter, thermal efficiency, effective efficiency, entropy generation and exergetic efficiency and to study the effects of system and operating parameters. Also, comparisons of packed bed solar air heater with that of smooth solar air heater of the conventional type have been presented. The results of experimental analysis on the performance of double flow packed bed solar air heater with wire mesh packing in the upper duct can be useful in designing such solar air heaters.

Keywords: 

packed bed, energy analysis, temperature rise, effective efficiency, exergy analysis

1. Introduction
2. Description of Experimental Work
3. Results and Discussion
4. Validation of Experimental Analysis
5. Conclusion
  References

[1] Kavak AE, Fatih K (2010). Energy and exergy analysis of a new flat-plate solar air heater having different obstacles on absorber plates. Applied Energy 87: 3438-3450. https://doi.org/10.1016/j.apenergy.2010.05.017.

[2] Altfeld K, Leiner W, Fiebig M (1988). Second law optimization of flat- plate solar air heaters. Solar Energy 2: 127-132.

[3] Bahrehmand D, Ameri M, Gholampour M. (2015). Energy and exergy analysis of different solar air collector systems with forced convection. Renewable Energy 83: 1119-1130. http://dx.doi.org/10.1016/j.renene.2015.03.009.

[4] Hüseyin B. (2013). Experimentally derived efficiency and exergy analysis of a new solar air heater having different surface shapes. Renewable Energy 50: 58-67. http://dx.doi.org/10.1016/j.renene.2012.06.022.

[5] S Bouadila, M Lazaar, S Skouri, S Kooli, A Farhat (2014). Energy and exergy analysis of a new solar air heater with latent storage energy. International Journal of Hydrogen Energy 39(27): 15266-15274. http://dx.doi.org/10.1016/j.ijhydene.2014.04.074.

[6] Chen GM, Alexander D, Paul K, Kostyantyn S. (2015). Comparative field experimental investigations of different flat plate solar collectors. Solar Energy 115: 577-588. http://dx.doi.org/10.1016/j.solener.2015.03.021.

[7] Hikmet E. (2008). Experimental energy and exergy analysis of a double-flow solar air heater having different obstacles on absorber plates. Building and Environment 43: 1046-1054. https://doi.org/10.1016/j.buildenv.2007.02.016.

[8] Farzaneh-Gord M, Arabkoohsar A, Deymi Dasht-bayaz M, Machado L, Koury RNN. (2014). Energy and exergy analysis of natural gas pressure reduction points equipped with solar heat and controllable heaters. Renewable Energy 72: 258-270. http://dx.doi.org/10.1016/j.renene.2014.07.019.

[9] Ahmad F, Kamaruzzaman S, Bakhtyar B, Mohamed G, Yusof OM, Hafidz RM. (2015). Review of solar drying systems with air based solar collectors in Malaysia. Renewable and Sustainable Energy Reviews 5: 1191-1204. http://dx.doi.org/10.1016/j.rser.2015.07.026.

[10] Golneshan AA, Nemati H. (2014). Exergy analysis of unglazed transpired solar collectors (UTCs). Solar Energy 107: 272-277. http://dx.doi.org/10.1016/j.solener.2014.04.025.

[11] Panwar NL, Kaushik SC, Surendran K. (2012). A review on energy and exergy analysis of solar dying systems. Renewable and Sustainable Energy Reviews 16: 2812- 2819. https://doi.org/10.1016/j.rser.2012.02.053

[12] Park SR, Pandey AK, Tyagi VV, Tyagi SK. (2014). Energy and exergy analysis of typical renewable energy systems. Renewable and Sustainable Energy Reviews 30: 105-123. http://dx.doi.org/10.1016/j.rser.2013.09.011.

[13] Sabzpooshani M, Mohammadi K, Khorasanizadeh H. (2014). Exergetic performance evaluation of a single pass baffled solar air heater. Energy 64: 697-706. http://dx.doi.org/10.1016/j.energy.2013.11.046

[14] Kamal S, Ho HK, Su B. (2014). Sankey diagram framework for energy and exergy flows. Applied Energy 136, 1035-1042. http://dx.doi.org/10.1016/j.apenergy.2014.08.070. 

[15] Ucar A, Inallı M. (2006). Thermal and exergy analysis of solar air collectors with passive augmentation techniques. International Communications in Heat and Mass Transfer 33, 1281-1290. https://doi.org/10.1016/j.icheatmasstransfer.2006.08.006

[16] Sanjay Y, Maneesh K, Varun S. (2014). Exergetic performance evaluation of solar air heater having arc shape oriented protrusions as roughness element. Solar Energy 105: 181-189. http://dx.doi.org/10.1016/j.solener.2014.04.001

[17] Singh KDP, Sharma SP. (2009). Analytical investigation on thermal performance of artificially roughened double flow solar air heater. ARISER 5: 1-7.

[18] Irfan K, Aydm D. (2004). Efficiency and exergy analysis of a new solar air heater. Renewable Energy 29: 1489-1501. https://doi.org/10.1016/j.renene.2004.01.006. 

[19] Nwosu Nwachukwu P. (2010). Employing exergy-optimized pin fins in the design of an absorber in a solar air heater. Energy 35: 571-575. https://doi.org/10.1016/j.energy.2009.10.027.

[20] Kumar LM, Sarviya RM, Bhagoria JL. (2012). Exergy evaluation of packed bed solar air heater. Renewable and Sustainable Energy Reviews 16: 6262-6267. http://dx.doi.org/10.1016/j.rser.2012.04.024

[21] Farzad J, Emad A. (2013). Energetic and exergetic evaluation of flat plate solar collectors. Renewable Energy 56: 55-63. http://dx.doi.org/10.1016/j.renene.2012.10.031.

[22] Oztop Hakan F, Fatih B, Hepbasli A. (2013). Energetic and exergetic aspects of solar air heating (solar collector) systems. Renewable and Sustainable Energy Reviews 21: 59-83. http://dx.doi.org/10.1016/j.rser.2012.12.019.

[23] Bayraka Fatih, Oztop Hakan F, Hepbasli A. (2013). Energy and exergy analyses of porous baffles inserted solar air heaters for building applications. Energy and Buildings 57: 338-345. http://dx.doi.org/10.1016/j.enbuild.2012.10.055.

[24] Kalogirou Soteris A, Karellas Sotirios, Badescu Viorel, Braimakis Konstantinos. (2015). Exergy analysis on solar thermal systems: a better understanding of their sustainability. Renewable Energy: 1-6. http://dx.doi.org/10.1016/j.renene.2015.05.037.

[25] Mukesh Kumar S, Radha Krishna P. (2016). Exergy based performance evaluation of solar air heater with arc-shaped wire roughened absorber plate. Renewable Energy 96: 233-243. http://dx.doi.org/10.1016/j.renene.2016.04.083

[26] Sharma P, Saini JS, Varma HK (1991). Thermal performance of packed bed solar air heaters. Solar Energy 47: 59-67. 

[27] Yeh HM, Ho CD, Hou JZ (2002). Collector efficiency of double-flow solar air heaters with fins attached. Energy 27: 715-727. S0360-5442(02)00010-5.

[28] Md Azharul K, Hawlader MNA (2006). Performance investigation of flat plate, v-corrugated and finned air collectors. Energy 31: 452-470. https://doi.org/10.1016/j.energy.2005.03.007.

[29] Abhishek P, Prabha C (2016). Thermal and thermohydraulic performance of wavy finned absorber solar air heater. Solar Energy 130: 250-259. http://dx.doi.org/10.1016/j.solener.2016.02.030. 

[30] Kline SJ, McClintock FA (1953). Describing uncertainties in single sample experiments. Mech. Eng. 75: 3-8.

[31] Torres-Reyes E, Navarrete-Gonzalez JJ, Zaleta-Aguilar Z, Cervantesde Gortari JG (2003). Optimal process of solar to thermal energy conversion and design of irreversible flat-plate solar collectors. Energy 28: 99-113.