Thermal Conductivity Enhancement of LiNO3/graphite Composite for Energy Storage

Thermal Conductivity Enhancement of LiNO3/graphite Composite for Energy Storage

Mohamed LachhebFethi Albouchi Foued Mzali Sassi Ben Nasrallah Tarek Benameur 

Ecole National d’Ingénieur de Monastir. Laboratoire des Etudes des systèmes Thermiques et Energétiques (LESTE), Avenue Ibn El Jazzar, Route de Kairouan, 5019 Monastir, Tunisie.1, Ecole National d’Ingénieur de Monastir

Laboratoire de Génie Mécanique 2, Avenue Ibn El Jazzar, Route de Kairouan, 5019 Monastir

Corresponding Author Email: 
lachheb_med@yahoo.fr
Page: 
9-16
|
DOI: 
https://doi.org/10.18280/ijht.310202
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

This paper deals with the analysis of a LiNo3/ graphite composite for thermal storage at high temperature. In such a composite, the salt (LiNo3) serves as a latent heat storage material and the graphite has been used to enhance the thermal conductivity of the salts. The elaboration method consists of a cold uni-axial compression of a physical mixing of salts powder and graphite particles.

The thermal conductivity of the LiNo3/ graphite composites with different mass fraction of graphite was measured using transient hot wire technique. Also, the influence of the moisture content on the measurement was studied.

1. Introduction
2. The Hot-Wire Method for the Measurement of Thermal Conductivity
3. Sample Preparation
4. Results and Discussion
5. Conclusions
  References

[1] R. Pitz-Paal, J. Dersch, B. Milow, ECOSTAR Roadmap Document. DLR, Germany, SES6-CT-2003-502578, 2005.

[2] S.D. Sharma, latent heat storage materials and systems: a review, International Jornal of Green Energy,vol.2, pp. 1-56, 2005.

[3] Jennifer Carrasco Portaspana, High temperature thermal energy storage systems based on latent and thermo-chemical heat storage, Faculty of Mechanical and Industrial Engineering, MASTER THESIS, Vienna, 2011.

[4] M. M. Farid, A. M. Khudhair, SAK. Razack , S. Al-Hallaj, A review on phase change energy storage materials and applications. Energy Convers Manage, vol.45, pp.1597–1615, 2004.

[5] L. Xia, P. Zhang, R.Z. Wang, Preparation and thermal charaterization of expanded graphite/paraffin composites phase change material, Carbon, vol. 48, pp. 2538-2548, 2010.

[6] S. Pincemina, R. Olivesa, X. Pya, M. Christ. Highly conductive composites made of phase change materials and graphite for thermal storage. Solar Energy Materials & Solar Cells 92 (2008) 603–613.

[7] P.A. Prabhu and al, Review of Phase Change Materials For Thermal Energy Storage Applications, Int J Eng Research and Applications, Vol.2, pp. 871-875, 2012.

[8] A. Sharma, V. V. Tyagi, C. R. Chen, D. Buddhi, Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews, vol. 13, pp. 318–345, 2009.

[9] S. M. Hasnain, Review on sustainable thermal energy storage technologies. Part I: heat storage materials and techniques. Energy Convers Manage, vol. 39 (11), pp. 1127–1138, 1998.

[10] A. TAYEB, Use of some industrial wastes as energy storage media, Energy Conversion and Management, Vol 37, n°2, pp 127-133, 1996.

[11] J. FUKAI et al, Thermal conductivity enhancement of energy storage media using carbon fibers, Energy Conversion and Management, Vol 41, pp 1543-1556, 2000.

[12] F. FRUSTERI et al, thermal conductivity measurement of PCM based storage system containing carbon fibres, Applied thermal engineering vol. 25, pp1623-1633, 2005.

[13] O. Mesalhy, K. Lafdi, A Elgafy. Carbon foam matrices saturated with PCM for thermal protection purpose. Carbon vol. 44, pp 2080–8, 2006.

[14] J.A. Weaver, R. Viskanta, Melting of frozen, porous media contained in a horizontal or a vertical, cylindrical capsule, Int. J. Heat Mass Transfer, vol.29, pp. 1943–1951, 1986.

[15] J.P. Bédécarrats, F. Strub, B. Falcon, J.P. Dumas, Phasechange thermal energy storage using spherical capsules: performance of a test plant, Int. J. Refrig. Vol. 19 (3) pp. 187–196, 1996.

[16] M. Xiao, B. Feng, K.Gong, Thermal performance of a high conductive shape- stabilized thermal storage material. Solar Energy Mater. Solar Cells, vol.69 pp. 293-296, 2001.

[17] M. Xiao, B. Feng, K.Gong, Preparation and performance of shape stabilized phase change thermal storage materials with high conductivity. Energy Convers. Manage, vol. 43 103-108, 2002.

[18] X.Py, R.Olives, S.Mauran, Paraffin/porous-graphite composite as a high and constant power thermal storage material.Int.J.HeatMassTransfer, vol. 44, pp. 2727-2737, 2001.

[19] A. Sarı , A. Karaipekli, Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expande graphite composite as phase change material. Appl. Therm. Eng, Vol. 27, pp. 1271–1277, 2007.

[20] A.Mills, M.Farid, J.R.Selman, S.Al-Hallaj, Thermal conductivity enhancement of phase change materials using a graphite matrix. Appl. Therm.Eng, vol. 26, pp.1652-1661, 2006.15

[21] H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids, Cladendon Press, Oxford, 1959.

[22] Z.Y. Liu, G. Cacciola, G. Restuccia, N. Giordano, Fast simple and accurate measurement of zeolite thermal conductivity, Zeolites 10 (July–August) 565, 1990.

[23] M. M. Kenisarin, High-Temperature phase change materials for thermal energy storage. Renewable and sustainable Energy Reviews, vol. 14, pp. 955-970, 2010.

[24] Z. Acem, J. Lopez, E. Palomo. Del Barrio, KNO3/NaNO3- Graphite materials for thermal energy storage at high temperature: PartI. - Elaboration methods and thermal properties. Appl. Therm. Eng, vol 30 , pp. 1580-1585,2010.