Three-Dimensional Numerical Investigation on a Commercial Vortex Tube Based on an Experimental Model- Part I: Optimization of the Working Tube Radius

Three-Dimensional Numerical Investigation on a Commercial Vortex Tube Based on an Experimental Model- Part I: Optimization of the Working Tube Radius

Rafiee S.E. Rahimi M. Pourmahmoud N. 

Department of Mechanical Engineering, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran

Department of Mechanical Engineering, Urmia University of Technology, Urmia, Iran

Page: 
49-56
|
DOI: 
https://doi.org/10.18280/ijht.310107
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

The working tube is a main part of vortex tube which the process of energy separation occurs inside this part. An appropriate design of working tube geometry leads to better vortex tube efficiency. A main objective of this paper is to study the effect of working tube radius (RWT) variations on the energy separation phenomena. The computational fluid dynamics (CFD) model is created based on an experimental model and is a three-dimensional (3D) steady compressible model that utilizes the k-ε turbulence model to solve the flow equations. In this paper the effect of RWTvariations has been studied in range of RWT=4.5mm-5.7mm and the optimized radius has been determined. Another purpose of this investigation is the demonstration of the successful use of CFD in order to develop a design tool that can be utilized with confidence over a range of operating conditions and geometries. The maximum ΔTc is 46.75 K for RWT=4.9 mm at cold mass fraction α=0.3, higher than basic model around 6.8%.

Keywords: 

CFD simulation, efficiency, optimization, vortex tube, working tube

  References

[1] Ranque, G.J. Experiments on expansion in a vortex with simultaneous exhaust of hot air and cold air (1933) J. Phys. Radium, 4, pp. 112-115. (Paris)

[2] Hilsch, R. The use of the expansion of gases in a centrifugal field as cooling process (1947) Review of Scientific Instruments, 18 (2), pp. 108-113. doi: 10.1063/1.1740893

[3] Acoustic streaming in swirling flow and the Ranque-Hilsch (vortex-tube) effect

[4] (1982) Journal of Fluid Mechanics, 124, pp. 139-172. doi: 10.1017/S0022112082002444

[5] Stephan, K., Lin, S., Durst, M., Huang, F., Seher, D. An investigation of energy separation in a vortex tube (1983) International Journal of Heat and Mass Transfer, 26 (3), pp. 341-348. doi: 10.1016/0017-9310(83)90038-8

[6] Dincer, K., Baskaya, S., Uysal, B.Z. Experimental investigation of the effects of length to diameter ratio and nozzle number on the performance of counter flow Ranque-Hilsch vortex tubes (2008) Heat and Mass Transfer/Waerme- und Stoffuebertragung, 44 (3), pp. 367-373. doi: 10.1007/s00231-007-0241-z

[7] Ahlborn, B.K., Gordon, J.M. The vortex tube as a classic thermodynamic refrigeration cycle (2000) Journal of Applied Physics, 88 (6), pp. 3645-3653. http://scitation.aip.org.ezproxy3.lhl.uab.edu/content/aip/journal/jap doi: 10.1063/1.1289524

[8] Akhesmeh, S., Pourmahmoud, N., Sedgi, H. Numerical study of the temperature separation in the Ranque-Hilsch vortex tube (2008) Am. J. Eng. Appl. Sci, 3, pp. 181-187. 

[9] Aljuwayhel, N.F., Nellis, G.F., Klein, S.A. Parametric and internal study of the vortex tube using a CFD model (2005) International Journal of Refrigeration, 28 (3), pp. 442-450. doi: 10.1016/j.ijrefrig.2004.04.004

[10] Skye, H.M., Nellis, G.F., Klein, S.A. Comparison of CFD analysis to empirical data in a commercial vortex tube (2006) International Journal of Refrigeration, 29 (1), pp. 71-80. doi: 10.1016/j.ijrefrig.2005.05.004

[11] Bramo, A.R., Pourmahmoud, N. Computational fluid dynamics simulation of length to diameter ratio effects on the energy separation in a vortex tube (2011) Thermal Science, 15 (3), pp. 833-848. http://thermalscience.vinca.rs.ezproxy3.lhl.uab.edu/pdfs/papers-2011/TSCI101004008B.pdf doi: 10.2298/TSCI101004008B

[12] Sohn, C.-H., Kim, C.-S., Jung, U.-H., Lakshmana Gowda, B.H.L. Experimental and numerical studies in a vortex tube (2006) Journal of Mechanical Science and Technology, 20 (3), pp. 418-425. doi: 10.1007/BF02917525

[13] Polat, K., Krmac, V. Determining of gas type in counter flow vortex tube using pairwise fisher score attribute reduction method (2011) International Journal of Refrigeration, 34 (6), pp. 1372-1386. doi: 10.1016/j.ijrefrig.2011.05.010

[14] Pourmahmoud, N., Zadeh, A.H., Moutaby, O., Bramo, A. Computational fluid dynamics analysis of helical nozzles effects on the energy separation in a vortex tube (2012) Thermal Science, 16 (1), pp. 151-166. http://www.doiserbia.nb.rs.ezproxy3.lhl.uab.edu/img/doi/0354-9836/2012/0354-98361100085P.pdf doi: 10.2298/TSCI110531085P

[15] Pourmahmoud, N., Hassanzadeh, A., Moutaby, O. Numerical analysis of the effect of helical nozzles gap on the cooling capacity of Ranque-Hilsch vortex tube (2012) International Journal of Refrigeration, 35 (5), pp. 1473-1483. doi: 10.1016/j.ijrefrig.2012.03.019 Exair Corporation. Vortex tubes and spot cooling products http://www.exair.com]

[16] Pourmahmoud, N., Hassanzadeh, A., Rafiee, S.E., Rahimi, M. Three-dimensional numerical investigation of effect of convergent nozzles on the energy separation in a vortex tube (2012) International Journal of Heat and Technology, 30 (2), pp. 133-140. http://www.iieta.org/Journals/IJHT/Archive doi: 10.18280/ijht.300219

[17] Gutsol, A.F. The Ranque effect (1997) Physics-Uspekhi, 40 (6), pp. 639-658. doi: 10.1070/PU1997v040n06ABEH000248