On Propulsion Due to Wavy Flow

On Propulsion Due to Wavy Flow

M.F. Platzer E. Sorokodum 

AeroHydro Research & Technology Associates, Pebble Beach, CA, USA

Vortex Oscillation Technology Ltd, Moscow, Russia

Page: 
109-120
|
DOI: 
https://doi.org/10.2495/D&NE-V3-N2-109-120
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

In this paper, the effect of a wavy flow on the motion of a body in water or air is considered. Experimental results are reviewed, which show that flow waviness decreases the hydrodynamic or aerodynamic drag and even generates a forward thrust. The physics of this phenomenon is explained and examples of research vessels, dirigible balloons and unmanned air vehicles are given, which demonstrated the usefulness of this effect. The design of future vehicles is discussed to draw attention to the potential of wave propulsion for technical applications.

Keywords: 

Katzmayr effect, oscillatory flow propulsion, unsteady aero/hydrodynamics, unsteady incompressible flows

  References

[1] Katzmayr, R., Effect of periodic changes of angle of attack on behavior of airfoils, NACA TM 147, October 1922.

[2] Jones, K.D., Lund, T.C. & Platzer, M.F., Experimental and computational investigation of fl apping wing propulsion for micro air vehicles (Chapter 16). Progress in Astronautics and Aeronautics, Vol. 195, American Institute of Aeronautics and Astronautics, 2001.

[3] Platzer, M.F. & Jones, K.D., Flapping wing aerodynamics – progress and challenges, AIAA Paper 2006-500, 2006.

[4] Heathcote, S. & Gursul, I., Flexible fl apping airfoil propulsion at low Reynolds numbers. AIAA Journal, 45(5), pp. 1066–1079, 2007.

[5] Toussaint, Kerneis & Girault, Experimental investigation of the effect of an oscillating air stream (Katzmayr effect) on the characteristics of airfoils, Translation from French, NACA TM 202, 1924.

[6] Stamer, F., Flugzeug mit tandemartig hintereinander angeordneten Tragfl aechen, German Patent No. 458827, 27 November 1924.

[7] Schmidt, W. & Reichstein, G., Der Knoller-Betz Effekt als Mittel zur Erhoehung des Wirkungsgrades von Schlagfl uegeln. Jahrbuch 1942 der deutschen Luftfahrtforschung, pp. 432–434, 1942.

[8] Schmidt, W., Rundlaufversuche mit einem Schlagrudermodell in Luft. Deutsche Flugtechnik, Issue 11, pp. 338–341, 1959.

[9] Schmidt, W., Ueber die Abstimmung eines Schlagruderfl uegels mit Nachfl uegel. Deutsche Flugtechnik, Issue 11, pp. 350–352, 1960.

[10] Schmidt, W., Der Wellpropeller, ein neuer Antrieb fuer Wasser-, Land- und Luftfahrzeuge. Zeitschrift fuer Flugwissenschaften, 13(12), pp. 472–479, 1965.

[11] Schmidt, W., Delphinluftschiff mit Wellantrieb. Technischoekonomische Information der zivilen Luftfahrt, 9(4), pp. 240–243, 1973.

[12] Sorokodum, E.D., Experimental Research of a Wave Flow Wing, Unpublished Report, Sevastopol: USSR, 1988.

[13] Bosch, H., Interfering airfoils in two-dimensional unsteady incompressible fl ow, AGARD CP-227, Paper No. 7, September 1977.

[14] Lan, C.E., The unsteady quasi-vortex-lattice method with applications to animal propulsion. Journal of Fluid Mechanics, 93, pp. 747–765, 1979.

[15] Platzer, M.F., Neace, K.S. & Pang, C.K., Aerodynamic analysis of fl apping wing propulsion, AIAA-93-0484, January 1993.

[16] Jones, K.D. & Platzer, M.F., Time-domain analysis of low-speed airfoil fl utter. AIAA Journal, 34(5), pp. 1027–1033, 1996.

[17] Tuncer, I.H. & Platzer, M.F., Thrust generation due to airfoil fl apping. AIAA Journal, 34(2), pp. 324–331, 1996.

[18] Triantafyllou, M.S. & Triantafyllou, G.S., An effi cient swimming machine. Scientifi c American, pp. 64–70, March 1995.

[19] Rosen, M.W., Water Flow about a Swimming Fish, U.S. Naval Ordnance Test Station, NOTS TP 2298, 1959.

[20] Zhu, Q., Wolfgang, M.J., Yue, D.K.P. & Triantafyllou, M.S., Three-dimensional fl ow structures and vorticity control in fi sh-like swimming. Journal of Fluid Mechanics, 468, pp. 1–28, 2002.

[21] Pavlenko, G.E., Energy extraction in the course of the ship motion in waves. Sudostroenie, 6, pp. 394–401, 1936.

[22] Wu, T.Y., Hydromechanics of swimming propulsion. Journal of Fluid Mechanics, 46, pp. 337–355, 521–568, 1971.

[23] Grue, J., Mo, A. & Palm, E., Propulsion of a foil moving in water waves. Journal of Fluid Mechanics, 186, pp. 393–417, 1988.

[24] Isshiki, H., Murakami, M. & Terao, Y., Utilization of wave energy into propulsion of ships – wave devouring propulsion. 15th Symposium on Naval Hydrodynamics, National Academy Press: Washington, DC, 1984.

[25] Kulikov, S.V., Kovalevsky, F.V. & Shapovalova, N.A., Application of a hydrofoil system as passive energy saving means for ship advancing in seas. 17th SMSHH ’88, Scientifi c and Methodological Seminar on Ship Hydrodynamics, Vol. 2, Varna, Bulgaria, pp. 48.1–48.6, 1988.

[26] Nikolaev, M.N., Savitskiy, A.I. & Senkin, Y.U.F., Basics of calculation of the effi ciency of a ship wave propulsor of the wing type. Sudostroenie, Issue 4, pp. 33–41, 1995.

[27] Konstantinov, G.A. & Yakimov, Y.L., Calculation of thrust of the ship propeller, utilizing the energy of sea waves, Izvestia AN Rossii. Mekhanika Zhidkosti I Gaza, Issue 3, pp. 139–143, 1995.

[28] Stefun, G.P., Model experiments with fi xed bow antipitching fi ns. Journal of Ship Research, 3(2), pp. 36–43, 1959.

[29] Wave energy propulsion. Norwegian Shipping News, 40(16), p. 50, 1984.

[30] Grebeshov, E.P. & Shakarvene, E.K., On the problem of use of the energy of sea waves. Sbornik trudov NTO sudostroitelnoi promyshlennosti im Akad AN Krylova: Gidrodynamika krylievykh dvizhielno-rulevykh kompksov, Vol. 512, pp. 15–31, 1992.

[31] Lai, P.S.K., Bose, N. & McGregor, R.C., Wave propulsion from a fl exible-armed, rigid-foil propulsor. Maritime Technology, 30(1), pp. 28–36, 1993.

[32] Rozhdestvensky, K.V. & Ryzhov, V.A., Aerohydrodynamics of fl apping-wing propulsors. Progress in Aerospace Sciences, 39, pp. 585–633, 2003.

[33] Grebeshov, E.P. & Kovryshnykh L.D., Propulsive characteristics of a wing propulsor operating near ground surfaces. Trudy TSAGI, 2211, pp. 6–20, 1983.

[34] Grebeshov, E.P. & Ruchin, A.P., Some matters of hydrodynamics of a propulsor of the fl apping wing type. Trudy TSAGI, 2380, pp. 1–24, 1988.

[35] Grebeshov, E.P. & Sagoyan, O.A., Hydrodynamic characteristics of oscillating wing, performing function of a lifting element and a propulsor. Trudy TSAGI, 1725, pp. 3–30, 1976.

[36] Grebeshov, E.P. & Shakarvene, E.P., On the question of drag of a wing in unsteady fl ow regime. Gidrodynamika bolshikh skorostei, Trudy 3 Vsesouznoi shkoly seminara, Kranoyarsk, pp. 175–183, 1987.

[37] Bulletin of the Society of Naval Architects of Japan, No. 719, pp. 18–26, 1989.

[38] Klart for Utproving av Foilpropellen. FisketsGang, 18, pp. 526–527, 1987. 

[39] Morikawa, H., Hiraki, A., Kobayashi, S. & Muguruma, Y., Outboard Propulsor with an Oscillating Horizontal Fin. Bio-mechanisms of Swimming and Flying, eds N. Kato, J. Ayers & H. Morikawa, Springer-Verlag: Tokyo, pp. 67–78, 2004.

[40] Jones, K.D., Bradshaw, C.J., Papadopoulos, J. & Platzer, M.F., Bio-inspired design of fl apping-wing micro air vehicles. The Aeronautical Journal, 109(1098), pp. 385–393, 2005.