Combination model of electric field and light for deactivation biofilm bacteria

Combination model of electric field and light for deactivation biofilm bacteria

Mokhamad Tirono Suhariningsih Retna Apsari Moh Yasin Gunawan A. A. N.* 

Physics Department, Universitas Islam Negeri Maulana Malik Ibrahim Malang, Indonesia

Physics Department, Faculty of Science and Technology, Airlangga University – Surabaya, Indonesia

Department of Physics, University of Udayana - Denpasar Bali, Indonesia

Corresponding Author Email: 
a.a.n.gunawan.unud@gmail.com
Page: 
153-165
|
DOI: 
https://doi.org/10.3166/ I2M.17.153-165
Received: 
|
Accepted: 
|
Published: 
31 March 2018
| Citation

ACCESS

Abstract: 

The basic ingredients for making medical devices are varied, so they require different sterilization techniques. Sterilization techniques that do not cause heat are needed because not all medical devices are made from heat-resistant materials. This study aims to develop a mathematical model of deactivation of biofilm-forming bacteria with a combination of electric fields and light. Mathematical models are used to explain the mechanism of the decrease in the number of bacteria on biofilms. The mathematical model testing was only carried out at the electric field intensity of 2.5 - 4.0 kV / cm and the light intensity of 50 - 250 mW / cm2 and in the biofilm of the bacterium Pseudomonas aeruginosa. The pulse duration of the electric field used is 50 µs, while the wavelength of light is 405 nm. Biofilm originated from the bacterium Pseudomonas  aeruginosa grown on a catheter and incubated for 6 days at 37oC. Biofilm exposure was carried out at room temperature 30oC and environmental air humidity around 75%. The results showed that an increase in the electric fields and light caused an increase in the decrease in the number of bacteria. Decreasing the number of bacterial colonies that occur fulfills logarithmic functions. The decrease in the number of bacteria is caused by an increase in the amount of diffusion of water and ions that pass through the cell membrane, thereby damaging the cell membrane. Increased diffusion of water and ions that pass through the membrane occur because of the modulation of the external electric field with the electric field of the charge space produced by light. The electric field of space charge does not affect the occurrence of irreversible electroporation.

Keywords: 

biofilm, bacteria, field, electricity, light, combination, intensity, exposure

1. Introduction
2. Experimental
3. Results and discussions
4. Conclusion
  References

Braxton E. E., Ehrlich G. D. J., Hall-Stoodley L., Stoodley P., Veeh R., Fux C., Hu F. Z., Quigley M., Post J. C. (2005). Role of biofilms in neurosurgical device- related infections. Neurosurgical Review, Vol. 28, pp. 249-255. http://dx.doi.org/10.1007/s10143-005-0403-8

Chen Z., Chittibabu K. G., Marx K. A., Kumar J., Tripathy S. K., Samuelson L. A., Akkara J., Kaplan D. L. (2014). Photodynamic protein incorporated in conducting polymer and sol-gelmatrices: Toward smart materials for information storage and processing. The International Society for Optical Engineering, Vol. 2189, pp. 105-115. http://dx.doi.org/10.1117/12.174047

Cheng C. L., Sun D. S., Chu W. C., Tseng Y. H., Chen H. H., Wang J. B., Chung P. H., Chen J. H., Tsai P. J., Lin N. T., Shiuan Y. M., Chang H. H. (2009). The effects of the bacterial interaction with visible-light responsive Titania photocatalyst on the bactericidal performance. Journal of Biomedical Science, Vol. 16, pp. 1-10. http://dx.doi.org/10.1186/1423-0127-16-7

Christodoulides D. N., Khoo J. C., Salamo G. J., Stegeman G. I., Stryland E. W. V. (2010). Nonlinear refraction and absorption: mechanisms and magnitudes. Advances in Optics and Photonics, pp. 60-200. http://dx.doi.org/10.1364/AOP.2.000060

Christensen L. D., Moser C., Jensen P. O., Rasmussen T. B., Christophersen L., Kjelleberg S., Kumar N., Hoiby N., Givskov M., Bjarnshol T. (2007). Impact of Pseudomonas aeruginosa quorum sensing on biofilm persistence in an in vivo intraperitoneal foreign-body infection model. Microbiology, Vol. 153, pp. 2312-2320. http://dx.doi.org/10.1099/mic.0.2007/006122-0

Cortese P., Dellacasa G., Gemme R., Bonetta S., Bonetta S., Carraro E., Motta F., Paganonic M., Pizzichem M. (2011). A pulsed electric field (PEF) bench static system to study bacteria inactivation. Nuclear Physics B (Proceedings Supplements), Vol. 215, No. 1, pp. 162-164. http://dx.doi.org/10.1016/j.nuclphysbps.2011.03.165

Gehl J. (2003). Electroporation: theory and methods, perspectivesfor drug delivery, gene therapy and research. Acta Physiol Scand, Vol. 177, pp. 437-447. http://dx.doi.org/10.1046/j.1365-201X.2003.01093.x

Gilbert B., Margaritondo G., Douglas S., Nealson K. H., Egerton R. F., Rempfer G. F., Stasio G. D. (2001). Xanes microspectroscopy of biominerals with photoconductive charge compensation. Journal of Electron Spectroscopy and Related Phenomena, pp. 114-116, 1005-1011. http://dx.doi.org/10.1016/s0368-2048(00)00342-x

Jose L. Pozo D., Tran N. V., Petty P. M., Johnson C. H., Walsh M. F., Bite U., Clay R. P., Mandrekar J. N. K. E., Steckelberg J. M., Patel R. (2009). Pilot study of association of bacteria on breast implants with capsular contracture. Journal Clinical Microbiol, Vol. 47, No. 5, pp. 1333-1337. http://dx.doi.org/10.1128/JCM.00096-09

Kakorin S., Neumann E. (2002). Electrooptical relaxation spectrometry of membrane electroporation in lipid vesicles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 209, No. 2-3, pp. 147-165. https://doi.org/10.1016/S0927-7757(02)00176-0

Keshavarz A., Abbasi Z., Hatami M. (2012). Propagation of incoherently coupled soliton pairs in photorefractive crystals and their self-deflection. International Journal of Optics and Photonics (IJOP), Vol. 6, No. 1, pp. 13-20.

Lazar V., Chifiriuc M. (2010). Medical significance and new therapeutical strategies for biofilm associated infections. Roumanian archives of microbiology and immunology, Vol. 69, No. 3, pp. 125-38.

Monfort S., Saldaña G., Condón S., Raso J., Álvarez I. (2012). inactivation of salmonella spp. in liquid whole egg using pulsed electric fields, heat, and additives. Food Microbiology, Vol. 30. pp. 393-399. http://dx.doi.org/10.1016/j.fm.2012.01.004

Montgomery N. L., Banerjee P. (2015). Inactivation of Escherichia coli O157:H7 and Listeria monocytogenes in biofilms by pulsed ultraviolet light. BMC Research Notes, pp. 235-246. https://doi.org/10.1186/s13104-015-1206-9

Neut D., Hendriks J. G., van Horn J. R., van der Mei H. C., Busscher H. J. (2005). Pseudomonas aeruginosa biofilm formation and slime excretion on antibiotic-loaded bone cement. Acta Orthop, Vol. 76, pp. 109-114. https://doi.org/10.1080/00016470510030427

Pavlin M., Kanduser M., Rebers M., Pucihar G., Hart F. X., Magjarevic R., Miklavc D. (2005). Effect of cell electroporation on the conductivity of a cell suspension. Biophysical Journal Volume, Vol. 88. pp. 4378-4390. http://dx.doi.org/10.1529/biophysj.104.048975

Puértolas E., López N., Condón S., Raso J., Álvarez L. (2009). Pulsed electric fields inactivation of wine spoilage yeast and bacteria. International Journal of Food Microbiology, Vol. 130, pp. 49-55. http://dx.doi.org/10.1016/j.ijfoodmicro.2008.12.035

Zhao W., Yang R., Lu R., Wang M., Qian P., Yang W. (2008). Effect of PEF on microbial inactivation and physical-chemical properties of green tea extracts. LWT- Food Science and Technology, Vol. 41, pp. 425-431. http://dx.doi.org/10.1016/j.lwt.2007.03.020