Influence of instream geomorphic units on the spatial distribution of pollutants in suburban river sediments. Case of the Chaudanne (France)

Influence of instream geomorphic units on the spatial distribution of pollutants in suburban river sediments. Case of the Chaudanne (France)

Philippe Namour David Eschbach Laurent Schmitt Benoit Cournoyer Bertrand Moulin Pascal Breil 

Université de Lyon, Institut des Sciences Analytiques, UMR 5280, CNRS, Université Lyon 1, ENS Lyon, 5 rue de la Doua, 69100 Villeurbanne, France

Irstea, UR MALY, 5 rue de la Doua, 69100 Villeurbanne, France

Université de Strasbourg, Laboratoire Image Ville Environnement UMR 7362 CNRS/Unistra/ENGEES, 3 rue de l’Argonne, 67083 Strasbourg, France

Université de Lyon, Laboratoire d’Ecologie Microbienne, UMR 5557, 43 bld du 11 Novembre 1918, 69622 Villeurbanne, France

AEMGEO, 6 rue Claudius Pionchon, 69003 Lyon, France

Irstea, UR HHLY, 5 rue de la Doua, 69100 Villeurbanne, France

Corresponding Author Email: 
philippe.namour@univ-lyon1.fr
Page: 
57-72
|
DOI: 
https://doi.org/10.3166/I2M.15.3-4.57-72
Received: 
N/A
| |
Accepted: 
N/A
| | Citation
Abstract: 

Influence of instream geomorphic units on the spatial distribution of pollutants in suburban river sediments: the example of the Chaudanne (France): In urbanized areas, small streams can be greatly damaged by urban inflows and combined sewer overflows (CSO). These polluted inputs can be several times higher than the natural stream flow over short time periods. Sound knowledge of the spatial distribution of the discharged pollutants in sediments is therefore crucial for designing monitoring strategies and suitable remediation operations. This field study combines geomorphic characterization, hydraulic conductivity measurement and pollutant assays in sediments of a small suburban river. The study site consists of two sectors (upstream and downstream a CSO outlet), each divided up into three geomorphic types: riffles, pools and runs. The last two were grouped into one class named "pool-runs" owing to their similar open channel flow hydraulics. Benthic and hyporheic sediments were systematically sampled every 2 m along the reaches. Conventional particulate pollutants (Cr, Pb, Ptot & Corg) were assayed in samples. The main result is that the pollutants were not arbitrarily distributed in the stream sediments, but their location showed statistically significant differences in concentration related to geomorphic units, with a preferential accumulation in the hyporheic zones of riffle units and a lesser one in those of pools. The decrease in hydraulic conductivity was significantly correlated with the increase in pollutant concentration. This occurred mainly at the transition between riffles and pool-run units. Our findings highlight the need to take into account the geomorphological and hydrological functioning of a stream to accurately locate the biogeochemical hotspots to be treated and thereby develop more relevant monitoring and remediation methodologies.

Keywords: 

pollution, hotspot, geomorphic unit, riffle, hyporheic zone, urban stream.

1. Introduction
2. Matériel et méthodes
3. Résultats
4. Discussion
5. Conclusion
Remerciements

Nous remercions l’Agence Nationale de la Recherche française (INVASION ANR-08-CESA-022 coordonnée par Benoit COUNOYER, et EPEC ANR-10-Ecot-007 coordonnée par Jolanda Boisson), l’Observatoire de Terrain en Hydrologie Urbaines (OTHU - www.othu.org/- FED de 4161), le Grand Lyon, l’Agence de l’eau Rhône-Méditerranée-Corse, la ZAEU (Zone atelier environnementale urbaine) - LTER et la région Rhône-Alpes pour leurs soutiens scientifique, administratif et financier.Nous remercions également Guillaume Fantino de AEMGEO pour sa participation à la réalisation des levés géomorphologiques et Stéphanie Petit et Bruno Tilly pour leur aide dans l’organisation et la réalisation des campagnes de prélèvements.

  References

Bencala K.E., Gooseff M.N., Kimball B.A. (2011). Rethinking hyporheic flow and transient storage to advance understanding of stream-catchment connections. Water Resour Research, vol. 47, doi:10.1029/2010WR010066, 2011.

Bencala KE. (2000). Hyporheic zone hydrological processes. Hydrological Processes, vol. 14, n° 15, p. 2797-2798.

Bou C. (1974). Les méthodes de récolte dans les eaux souterraines interstitielles. Annales de Spéologie, vol. 29, n° 4, p. 611-619.

Bravard J.P., Petit F. (2000). Les cours d’eau: dynamique du système fluvial. Paris (France), Armand Colin.

Breil P., Lafont M., Vivier A., Namour P., Schmitt L. (2007). Effects of combined sewer overflows on periurban stream ecosystem: Methodological approach. Proceedings of the International Symposium on New Directions in Urban Water Management, 12-14 september. Unesco Headquarters, Paris (France), (UNESCO ed). 8.

Breil P., Radojevic B., Chocat B. (2010). Urban development and extreme flow regime changes. In Global Change: Facing Risks and Threats to Water Resources In: 6th World FRIEND Conference. Fez (Morocco) : IAHS Publ, p. 340.

Delile H, Schmitt L., Jacob-Rousseau N., Grosprêtre L., Privolt G., Preusser F. (2016). Headwater valley response to climate and land use changes during the Little Ice Age in the Massif Central (Yzeron basin, France). Geomorphology, vol. 257, p. 179-197.

Houbrechts G., Van Campenhout J., Levecq Y., Hallot E., Peeters A, Petit F. (2012). Comparison of methods for quantifying active layer dynamics and bedload discharge in armoured gravel-bed rivers. Earth Surface Processes & Landforms, vol. 37, n° 14, p. 1501-1517.

Hvorslev M. (1951). Time Lag and Soil Permeability in Ground-Water Observations. (Waterways experiment station). Vicksburg, Missippi:Corps of engineers, U.S. Army.

Kasahara T., Hill A.R. (2006). Effects of riffle-step restoration on hyporheic zone chemistry in N-rich lowland streams. Canadian Journal of Fisheries & Aquatic Sciences, vol. 63, n° 1, p. 120-133.

Käser D.H., Binley A., Heathwaite A.L., Krause S. (2009). Spatio-temporal variations of hyporheic flow in a riffle-step-pool sequence. Hydrological Processes, vol. 23, n° 15, p. 2138-2149.

Lafont M., Marsalek J., Breil P. (2008). Urban aquatic habitat characteristics and functioning. In: Aquatic habitats in integrated urban water management, Urban water Series, (Wagner I, Marsalek J, Breil P, eds). The Netherlands:NESCO-IHP, Taylor and Francis Group, 9-24.

Lafont M., Vivier A., Nogueira S., Namour P., Breil P. (2006). Surface and hyporheic oligochaete assemblages in a French suburban stream. Hydrobiologia, vol. 564, n° 1, p. 183-193.

Lafont M., Vivier A. (2006). Oligochaete assemblages in the hyporheic zone and coarse surface sediments: Their importance for understanding of ecological functioning of watercourses. Hydrobiologia, vol. 564, n° 1, p. 171-181.

Malavoi J.R., Souchon Y. (2002). Description standardisée des principaux faciès d’écoulement observables en rivière : clé de détermination qualitative et mesures physiques. Bulletin Français de la Peche et de la Pisciculture, n° 365-66, p. 357-372.

McClain M.E., Boyer E.W., Dent C.L., Gergel S.E., Grimm N.B., Groffman P.M., Hart S.C., Harvey JW, Johnston CA, Mayorga E, McDowell WH, Pinay G (2003). Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems, vol. 6, n° 4, p. 301-312.

Namour P., Breil P., Schmitt L., Lafont M., Grosprêtre L. (2015). Dynamique des hydrosystèmes périurbains en réponse aux changements paysagers : l’exemple de l’Ouest lyonnais. In: Aux marges de la ville : Paysages, Sociétés, Représentations, (Collin Bouffier S, Brelot C-I, Menjot D, eds). Lyon (France), La Martinière, p. 123-139.

Namour P., Schmitt L. Eschbach D., Moulin B., Fantino G., Bordes C., Breil P. (2015). Stream pollution concentration in riffle geomorphic units (Yzeron basin, France). Sciences of the Total Environnement, n° 532, p. 80-90.

Namour P. (1999). Auto-épuration des rejets organiques domestiques, nature de la matière organique résiduaire et son effet en rivière [PhD Dissertation]. Lyon (France), [http://bit.ly/PhNamourPhthesis]: Université de Lyon.

Paul M.J., Meyer J.L. (2001). Streams in the urban landscape. Annual Review of Ecology & Systematics, vol. 32, p. 333-365.

Rofes G. (1980). Etude des sédiments, méthodes de prélèvement et d’analyses pratiquées au laboratoire de sédimentologie. (Etude n°47). Antony (France):CTGREF, ministère de l’Agriculture.

Schmitt L., Lafont M., Trèmolières M., Jezequel C., Vivier A., Breil P., Namour Ph., Valin K., Valette L. (2011). Using hydro-geomorphological typologies in functional ecology: Preliminary results in contrasted hydrosystems. Physics & Chemistry of the Earth, vol. 36, n° 12, p. 539-548.

Shelton L.R., Capel P.D. (1994). Guidelines for collecting and processing samples of stream bed sediment for analysis of trace elements and organic contaminants for the National Water-Quality Assessment Program. (Open-File Report). Sacramento (California): USGS Earth Science Information Center.

Tonina D., Buffington J.M. (2007). Hyporheic exchange in gravel bed rivers with pool-riffle morphology: Laboratory experiments and three-dimensional modeling. Water Resour

Research, vol. 43, doi:10.1029/2005WR004328.

Tonina D., Buffington J.M. (2011). Effects of stream discharge, alluvial depth and bar amplitude on hyporheic flow in pool-riffle channels. Water Resour Research, vol. 47, DOI: 10.1029/2010WR009140.

United Nations. (2010). World Urbanization Prospects, the 2009 Revision: Highlights. (Department of Economic and Social Affairs, Population Division). New York, Department of Economic and Social Affairs, Population Division, US.

Vervier P., Gibert J., Marmonier P., Doleolivier M.J. (1992). A perspective on the permeability of the surface freshwater-groundwater ecotone. Journal of the North American Benthological Society, vol. 11, n° 1, p. 93-102.

Vidon P., Allan C., Burns D., Duval T.P., Gurwick N., Inamdar S., Lowrance R., Okay J., Scott D., Sebestyen S. (2010). Hot Spots and Hot Moments in Riparian Zones: Potential for Improved Water Quality Management. Journal of the American Water Resources Association, vol. 46, n° 2, p. 278-298.

Wagner I., Breil P. (2013). The role of ecohydrology in creating more resilient cities. Ecohydrology & Hydrobiology, vol. 13, p. 113-134.

Williams D.D., Febria C.M., Wong J.C.Y. (2010). Ecotonal and other properties of the Hyporheic Zone. Fundamental & Applied Limnology, vol. 176, n° 4, p. 349-364.

Wolman M.G. (1954). A Method of Sampling Coarse River-Bed Material. Transactions American Geophysical Union, vol. 35, n° 6, p. 951-956.