Laser optical feedback imaging with Nd3+:YAG microlaser

Laser optical feedback imaging with Nd3+:YAG microlaser

Olivier Jacquin Olivier Hugon Vadim Girardeau Eric Lacot 

Laboratoire Interdisciplinaire de Physique, Université Grenoble-Alpes,CNRS 140 av. de la Physique, 38402 Saint Martin d’Hères, France

Corresponding Author Email: 
olivier.jacquin@univ-grenoble-alpes.fr
Page: 
9-36
|
DOI: 
https://doi.org/10.3166/I2M.15.1-2.9-36
Received: 
N/A
| |
Accepted: 
N/A
| | Citation
Abstract: 

The LOFI setup (Laser Optical Feedback Imaging) is a very sensitive heterodyne interferometer which involves the dynamics of lasers. In this imaging system, the optical beat occurs inside the laser cavity, between the intracavity light and the light backscattered by the target. By this way, the laser is the source and also the detector, which implies that it is very easy to use (this optical system is self-aligned) and the measures are only limited by “shotnoise”. This technique allows doing images of reflectivity and images of phase in difficult conditions, as imaging through diffusive media or imaging of very weakly reflective targets. In this manuscript, several setups are described in order to reach the “shot-noise” limit, and we show many results of applications like the imaging through diffusive media, the vibrometry and the synthetic aperture.

Keywords: 

heterodyne interferometry, laser imaging, optical feedback, vibrometry, noncontact testing, scattering media, laser dynamics, synthetic aperture.

1. Technique LOFI
2. Applications de la technique LOFI
3. Conclusion
  References

Beard P. (2011). Biomedical photoacoustic imaging. Interface focus, vol. 1, p. 602-631

Ghiglia D. C., Pritt M. D. (1998). Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software, edition Wiley

Glastre W., Jacquin O., Hugon O., Guillet de Chatellus H., Lacot E. (2012). Deep and optically resolved imaging through scattering media by space-reversed propagation, Optics Letters, vol. 37, n° 23, p. 4823-4825.

Glastre W., Hugon O., Jacquin O., Guillet de Chatellus H., Lacot E. (2013a). Demonstration of a plenoptic microscope based on Laser Optical Feedback Imaging, Optics Express, vol. 21, n° 6, p. 7294-7303.

Glastre W. (2013b). Imagerie plénoptique à travers des milieux complexes par synthèse d’ouverture optique. Thèse en Electronique, Electrotechnique, Automatique, Traitement du Signal, Université Joseph Fourier.

Hugon O., Joud F., Lacot E., Jacquin O., de Chatellus H. G. (2011). Coherent microscopy by laser optical feedback imaging (LOFI) technique. Ultramicroscopy, vol. 111, n° 11, p. 1557-1563.

Jacquin O., Heidmann S., Lacot E., Hugon O. (2009). Self-aligned setup for laser optical feedback imaging insensitive to parasitic optical feedback, Applied Optics, vol. 48, n° 1, p. 64-68.

Jacquin O., Lacot E., Glastre W., Hugon O., Guillet de Chatellus H. (2011). Experimental comparison of autodyne and heterodyne laser interferometry using an Nd:YVO 4 microchip laser, J. Opt. Soc. Am. A, vol. 28, n° 8, p. 1741-1746.

Jacquin O.,Glastre W., Lacot E., Hugon O., Guillet de Chatellus H., Ramaz F. (2012). Acousto-optic laser optical feedback imaging,” Optics Letters, vol. 37, n° 13, p. 2514-2516.

Jacquin O., Lacot E., Hugon O., Guillet de Chatelus H. (2015). Using Doppler shift induced by Galvanometric mirror scanning to reach shot noise limit with laser optical feedback imaging setup, Applied Optics, vol. 54, n° 8, p. 1978-1983.

LeBoulluec P., Liu H., Yuan B. (2013). A cost-efficient frequency-domain photoacoustic imaging system, American Journal of Physics, vol. 81, n° 9, p. 712-717.

Lacot E., Day R., Stoeckel F. (1999). Laser optical feedback tomography, Optics Letters, vol. 24, n° 11, p. 744-746.

Lacot E., Day R., Stoeckel F. (2001). Coherent laser detection by frequency-shifted optical feedback, Physical Review A, Vol. 64, n° 4, p. 043815- 043825.

Megret P., Wuilmart L., Froidure J. C., Blondel M. (1997). Bit-error-rate in optical fiber links with optical reflections, in Proceedings of IEEE Conference on Lasers-and-Electro-Optics-Society, vol. 2, p. 87-89.

Otsuka K. (1979). Effects of external perturbations on LiNdP4O12 lasers, IEEE J. Quantum Electron. vol. 15, n° 1, p. 655-663.

Otsuka K., Abe K., Ko J. Y., Lim T. S. (2002). Real-time nanometer-vibration measurement with a self-mixing microchip solid-state laser. Optics letters, vol. 27, n° 15, p. 1339-1341.

Otsuka K. (2011). Self-mixing thin-slice solid-state laser metrology. Sensors, vol. 11, n° 2, p. 2195-2245.

Russell C. H., Younus M. I., Blackshire J. (1998). Robust phase-unwrapping algorithm with a spatial binary-tree image decomposition, Applied Optics, vol. 37, n° 20, p.4468-4476

Siegman E. (1986). Laser spiking and mode competition. Lasers. California, University Science Books, Mill Valley, p. 955-971.

Storm M. E. (1992). Controlled retroreflection: a technique for understanding and eliminating parasitic lasing, J. Opt. Soc. Am. B, vol. 9, n° 8, p. 1299-1304.