Response of fiber Bragg gratings with curvature

Response of fiber Bragg gratings with curvature

Romain Guyard 
Dominique Leduc 
Yann Lecieux 
Cyril Lupi 
Jérémy Potet 
Julie Beaucé 
Marc Douay 
Laurent Lablonde 

GeM, Université de Nantes, UMR CNRS 6183 2 rue de la houssinière BP 92208 44322 Nantes Cedex 3, France

PhLAM, Université Lille 1, UMR CNRS 8523 Cité Scientifique, Bâtiment P5 59655 Villeneuve d’Ascq, France

Entreprise iXblue Rue Paul Sabatier 22300 Lannion, France

Corresponding Author Email: 
dominique.leduc@univ-nantes.fr
Page: 
97-114
|
DOI: 
https://doi.org/10.3166/i2m.16.1-4.97-114
Received: 
|
Accepted: 
|
Published: 
31 December 2017
| Citation

ACCESS

Abstract: 

In this article we show that the Bragg wavelength variation induced by a curvature in the grating is related to a competition between the variation of the effective index and the variation of the coupling coefficient of counter-propagating modes. The weighting coefficient between the two variables is the mean effective index of the grating

Keywords: 

Fiber Bragg gratings, Bending

1. Modélisation des réseaux de Bragg courbés
2. Validation expérimentale
3. Conclusion
  References

Erdogan T.  (1997).  Fiber grating spectra.  Journal of Lightwave Technology, vol. 15, no  8, p. 1277-1294.

Gafsi R., El-Sherif M. A.  (2000).  Analysis of induced-birefringence effects on fiber bragg gratings. Optical Fiber Technology, vol. 6, no 3, p. 299 - 323.

Garth S.  (1987).  Modes on a bent optical waveguide.  Optoelectronics, IEE Proceedings J, vol. 134, no 4, p. 221-229.

Garth S. (1988). Birefringence in bent single-mode fibers. Journal of Lightwave Technology, vol. 6, no 3, p. 445-449.

Heiblum M., Harris J. H. (1975). Analysis of curved optical waveguides by conformal trans- formation. IEEE Journal of Quantum Electronics, vol. 11, no 2, p. 75-83.

Hill K., Fujii Y., Johnson D., Kawasaki B.  (1978).  Photosensitivity in optical waveguides: application to reflection filter fabrication.  Applied Physics Letters, vol. 32, no  10, p. 647-649.

Kakihara K., Kono N., Saitoh K., Koshiba M. (2006, Nov). Full-vectorial finite element method in a cylindrical coordinate system for loss analysis of photonic wire bends. Opt. Express, vol. 14, no 23, p. 11128-11141.

Kersey A., Davis A., Patrick H., Leblanc M., Koo K., Askins C. et al.  (1997). Fiber Grating Sensors. Journal of Lightwave Technology, vol. 15, no 8, p. 1442-1463.

Lim K.-S., Yang H.-Z., Becir A., Lai M.-H., Ali M. M., Qiao X. et al. (2013). Spectral analysis of bent fiber bragg gratings: theory and experiment. Optics letters, vol. 38, no 21, p. 4409-4412.

Marcuse D. (1976). Field deformation and loss caused by curvature of optical fibers. Journal of the Optical Society of America (1917-1983), vol. 66, no 4, p. 311.

Shyroki D. (2008). Exact equivalent straight waveguide model for bent and twisted waveguides. IEEE Transactions on microwave theory and techniques, vol. 56, no 2, p. 414-419.

Thompson A. C., Brown W. G., Stoddart P. R., Wade S. A.  (2010).  Bend effects on fibre bragg gratings in standard and low bend loss optical fibres. In 35th australian conference on optical fibre technology (acoft), p. 1-4.

Thompson A. C., Cadusch P. J., Robertson D. F., Stoddart P. R., Wade S. et al. (2012). Origins of spectral changes in fiber bragg gratings due to macrobending.  Journal of Lightwave Technology, vol. 30, no 22, p. 3500-3511.

Timoshenko S., Goodier J. N. (1969). Theory of elasticity. McGraw-Hill.

Wade S., Robertson D., Thompson A. C., Stoddart P. R. (2011). Changes in spectral properties of fibre bragg gratings owing to bending. Electronics Letters, vol. 47, no 9, p. 558-559.

Wassmann F. (1999). Modal field analysis of circularly bent single-mode fibers. J. Lightwave Technol., vol. 17, no 5, p. 957.

Zhang W., Lei X., Chen W., Xu H., Wang A. (2015). Modeling of spectral changes in bent fiber bragg gratings. Optics letters, vol. 40, no 14, p. 3260-3263