A drop-sizing method by imaging of a two-phase cryogenic flow

A drop-sizing method by imaging of a two-phase cryogenic flow

Nicolas Fdida  Yves Mauriot  Lucien Vingert  Matthieu Nugue 

ONERA, the French Aerospace Lab Centre de Palaiseau, chemin de la Hunière, 91123 Palaiseau Cedex, France

Corresponding Author Email: 
nicolas.fdida@onera.fr
Page: 
229-253
|
DOI: 
https://doi.org/10.3166/i2m.16.1-4.229-253
Received: 
|
Accepted: 
|
Published: 
31 December 2017
| Citation

ACCESS

Abstract: 

The knowledge of atomization processes of cryogenic jets is one of the most important points to master the stability of rocket motors fed by liquid propellants. A Cryogenic Visualization Vessel (BVF) was designed to study the atomization of a single liquid oxygen jet, under non-reactive conditions, with simultaneous optical diagnostics. A dropsizing method based on imaging is used to investigate the atomization of the liquid oxygen jet by a concurrent high-speed helium or nitrogen gas flow. This kind of coaxial jet produces a dense spray of heterogeneous and rapid droplets, particularly difficult to measure with conventional imaging devices. Two long-distance microscope objectives are calibrated and compared in terms of resolution and depth of field, for application to droplet size measurements on the BVF

Keywords: 

two phase flows, cryogenic flows, shadowgraphy, drop-sizing, velocimetry

1. Introduction
2. Le banc Mascotte
3. Le système d’imagerie
4. Résultats expérimentaux
5. Conclusion
Remerciements

Les auteurs tiennent à remercier les équipes en charge des mesures optiques et de l’instrumentation du banc Mascotte qui ont participé à cette étude expérimentale : Eric Paux, Frank Vannier et David Carru

  References

Candel S., Juniper M., Scouflaire P., Rolon C., Clauss W., Klimenko D., Oschwald M., Vingert L. (2003). Investigations of subcritical and transcritical cryogenic combustion using imaging and laser techniques. In 5th International Symposium on Space Propulsion, Chattanooga, USA, p. 27-30.

Coates C. (2011). New sCMOS vs. current microscopy cameras. Biophotonics International, vol. 18, n° 5, p. 24-27.

Cavitar (2016). Cavilux TM Smart for High-Speed illumination, http://www.cavitar.com/ cavilux-laser-illumination-products/cavilux-smart

Dodge L. G., Rhodes D. J., Reitz R. D. (1987). Drop-size measurement techniques for sprays: comparison of Malvern-Diffraction and aerometrics Phase/Doppler. Applied Optics, vol. 26, n° 11, p. 2144-2154.

Fdida N. (2008). Développement d'un système de granulométrie par imagerie. Application aux sprays larges et hétérogènes. Thèse en Energétique, Université de Rouen, France.

Fdida N., Blaisot J.-B., Floch A., Dechaume D. (2010). Drop size measurement techniques applied to gasoline sprays. Atomization and Sprays, vol. 20, p. 141-162.

Fdida N., Blaisot J.-B. (2010). Drop size distribution measured by imaging: determination of the measurement volume by the calibration of the point spread function. Measurement Science Technology, vol. 21. 

Fdida N., Vingert L., Ristori A., Le Sant Y. (2016a). Drop size and velocity measurements in a cryogenic jet flame of a rocket type combustor using high-speed imaging. Atomization and Sprays, vol. 26, n° 5, p. 411-438.

Fdida N., Mauriot Y., Vingert L., Ristori A., Godel S., Théron M. (2016b). Caractérisation de l’atomisation d’un jet d’oxygène liquid assisté par azote gazeux au moyen de diagnostics optiques. Actes du Congrès Francophone de Techniques Laser, CFTL’16, Toulouse, France.

Gicquel P., Vingert L. (2000). Flow investigations of cryogenic sprays in combustion at sub and supercritical conditions. Actes de la 16e Conférence ICLASS, Darmstadt, Allemagne.

Goodman J. W. (1968). Introduction to Fourier Optics. Editions McGraw-Hill, New York. Habiballah M., Orain M., Grisch F., Vingert L., Gicquel P. (2006). Experimental studies of high-pressure cryogenic flames on the Mascotte facility. Combustion Science and Technology, vol. 178, p. 101-128.

Infinity (2016). Model K2 DistamaxTM long distance microscope, http://www.infinityusa. com/products/instruments/Model-K2-DistaMax.aspx

Lasheras J. C., Hopfinger E. J. (2000). Liquid jet instability and atomisation in a coaxial gas. Annual Review of Fluid Mechanics, vol. 32, p. 275-308.

LaVision (2016). CCD and sCMOS Cameras, http://www.lavision.de/en/products/ cameras/ccd_and_scmos_cameras.php

Mauriot Y., Fdida N., Vingert L., Godel S., Ristori A., Théron M., (2016). Characterizing coaxial primary atomization without combustion on the MASCOTTE test bench. Thermoacoustic Instabilities in Gas Turbines and Rocket Engines: Industry meets Academia, Munich, Allemagne.

Murrone A., Fdida N., Le Touze C., Vingert L. (2014). Atomization of cryogenic rocket engines coaxial injectors. Modeling aspects and experimental investigations. Space Propulsion 2014, COLOGNE, Germany.

Nugue M., Devillers R.W., Le Besnerais G., Cesco N. (2016). Particle detection & size evaluation in solid propellant flames via experimental image analysis to improve two-phase flow simulation in rocket motors. Actes de la conférence Space Propulsion, Rome, Italie.

Pentland A. P. (1987). A new sense for depth of field. IEEE Transactions on PAMI, vol. 9, n° 4, p. 523-531.

Questar Corporation (2016). Long distance microscope QM100, http://www.questarcorp. com/qm100.htm

Ren K. F., Lebrun D., Özkul C., Kleitz A., Gouesbet G., Gréhan G. (1996). On the measurements of particles by imaging methods: theoretical and experimental aspects. Part. Part. Syst. Charact., vol. 13, p. 156-164.

Sowa W.A. (1992). Interpretating Mean Drop Diameters Using Distribution Moments. Atomization and Sprays, vol. 2, p. 1-15.

Vaudor G. (2015). Atomisation assistée par un cisaillement de l'écoulement gazeux. Développement et validation. Thèse en Energétique, Université de Rouen, France.

Vision Research (2016). Phantom® Camera v711 Overview and specifications, https://www.phantomhighspeed.com/french/Caméras-Rapides/Gammes/Série-v/v711

Xiong Y., Shafer S.a. (1993). Depth from focusing and defocusing. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition