Design optimization and control of a double stator permanent magnet generator for tidal energy applications

Design optimization and control of a double stator permanent magnet generator for tidal energy applications

Jian Zhang
Luc Moreau
Azeddine Houari
Mohamed Machmoum

IREENA, Université de Nantes 37 Bd de l’Université BP. 406 44602 Saint-Nazaire CEDEX

Corresponding Author Email: 
mohamed.machmoum@univ-nantes.fr
Page: 
339-359
|
DOI: 
https://doi.org/10.3166/EJEE.18.339-359
Received: 
N/A
|
Accepted: 
N/A
|
Published: 
31 December 2016
| Citation
Abstract: 

This paper investigates a variable speed direct drive optimization and control for marine current energy application based on a Double Stator Permanent Magnet Generator (DSPMG). At first, turbine concepts, relative projects and usual conversion chains for tidal energy conversion are briefly presented. An original generator multi-objective optimal design method taking into account the tidal speed occurrence, control strategy and converter size to minimize the investment and maximize the annual energy output is developed. The conceptual advantages of the DSPMG are also used to show the possibility of uninterruptible operation under converter open phase faults. Simulation results are given and demonstrate the effectiveness of the optimization design and the proposed fault tolerant control.

Keywords: 

marine current renewable energy, modelling, optimal design, double stator permanenet magnet machine, fault-tolerant control.

1. Introduction
2. Marine current energy
3. Modelling of DSPMG conversion chain
4. DSPMG multi-objectives optimization
5. Control of a DSPMG conversion chain
6. Conclusion
  References

Alstom. (2013). http://scotsrenewables.com/blog/tidalpower/alstoms-tidal-turbine-reaches -1mw-in-offshore-conditions/. ([Online; accessed 19-September-2018]) Andritz-Hydro-Hammerfes. (2014). http://www.andritzhydrohammerfest.co.uk/. ([Online; accessed 19-September-2018])

Anwar M. B., Moursi M. S. E., Xiao W. (2017, March). Novel power smoothing and generation scheduling strategies for a hybrid wind and marine current turbine system. IEEE Transactions on Power Systems, Vol. 32, No. 2, pp. 1315-1326.

Atlantis. (2015). http://atlantisresourcesltd.com/turbines/ar-series.html. ([Online; accessed 19-September-2018])

Aubry J., Ben Ahmed H., Multon B. (2012). Sizing optimization methodology of a surface permanent magnet machine-converter system over a torque-speed operating profile: Application to a wave energy converter. IEEE Transactions on Industrial Electronics, Vol. 59, No. 10, pp. 2116–2125.

Benelghali S., Benbouzid M. E. H., Charpentier J. F. (2012). Generator systems for marine current turbine applications: A comparative study. IEEE Journal of Oceanic Engineering, Vol. 37, No. 3, pp. 123-138.

Benelghali S. E., Benbouzid M. E. H., Charpentier J. F. (2007). Marine tidal current electric power generation technology: State of the art and current status. In 2007 ieee international electric machines & drives conference, p. 1407-1412. Antalya, Turkey.

Campbell R., Martinez A., Letetrel C., Rio A. (2017). Methodology for estimating the french tidal current energy resource. International Journal of Marine Energy, Vol. 19, No. Supplement C, pp. 256 - 271.

Chen H., Ait-Ahmed N., Machmoum M., Zaim M.-H. (2016). Modeling and vector control of marine current energy conversion system based on doubly salient permanentmagnet generator. IEEE Transactions Sustainable Energy, Vol. 7, No. 1, pp. 409-418.

Dieng A., Benkhoris M. F., Claire J. C. L. (2014). Fault-tolerant control of 5-phase pmsg for marine current turbine applications based on fractional controller. In International federation of automatic control.

Fox C. J., Benjamins S., Masden E. A., Miller R. (2017). Challenges and opportunities in monitoring the impacts of tidal-stream energy devices on marine vertebrates. Renewable and Sustainable Energy Reviews.

Grauers A. (1996). Design of direct-driven permanent-magnet generators. Phd dissertation, Chalmers University.

Li H., Chen Z. (2008). Overview of different wind generator systems and their comparisons. In Renewable Power Generation, IET, Vol. 2, No. 2, pp. 123-138.

Mcdonald A. S., Mueller M. A., Polinder H. (2008, March). Structural mass in direct-drive permanent magnet electrical generators. IET Renewable Power Generation, Vol. 2, No. 1, pp. 3-15.

MCT.Ltd. (2012). http://www.marineturbines.com. ([Online; accessed 19-September-2018])

Mehrzad D., Luque J., Cuenca M. C. (2009). Vector control of pmsg for wind turbine applications. Technical report. Aalborg University.

Openhydro. (2014). http://www.openhydro.com/home.html. ([Online; accessed 19-September-2018])

Panda R. C. (2012). Introduction to PID controllers-Theory, tuning and application to frontier areas. InTech.

Pyrhönen J., Jokinen T., Hrabovcová V. (2014). Design of rotating electrical machines.

John Wiley & Sons. Rourke F., Boyle F., Reynolds A. (2010). Marine current energy devices: Current status and possible future applications in ireland. Renewable and Sustainable Energy Reviews, Vol. 14,No. 3, pp. 1026-1036.

Zhang J. (2015). Optimization design and control strategies of a double stator permanent magnet generator for tidal current energy application. Phd dissertation, Université de Nantes.

Zhang J., Houari A., Seck A., Moreau L., Machmoum M. (2016, March). Fault tolerant control of a double stator permanent magnet generator in tidal current energy system. In 2016 ieee international conference on industrial technology (icit), p. 419-424.