Optimized design of doubly salient permanent magnet generator taking into account the efficiency of energy conversion

Optimized design of doubly salient permanent magnet generator taking into account the efficiency of energy conversion

Nacereddine Harkati Luc Moreau Jean-Frédéric Charpentier Mohammed El Hadi Zaïm

Laboratoire IREENA, Polytech Nantes., Université de Nantes BP 406, 44602 Saint-Nazaire, France

Laboratoire IRENav, Ecole Navale, 29240 Brest, France

Corresponding Author Email: 
el-hadi.zaim@univ-nantes.fr, jean-frederic.charpentier@ecole-navale.fr
Page: 
319-338
|
DOI: 
https://doi.org/10.3166/EJEE.18.319-338
Received: 
N/A
|
Accepted: 
N/A
|
Published: 
31 December 2016
| Citation
Abstract: 

This paper presents a design methodology of a doubly salient PM generator to be associated to a tidal stream turbine. The behavior and the supply strategy of this unconventional machine are firstly described. An energy ratio and a torque to mass ratio are defined as two criteria to optimize for the design of such system. In fact these criteria are related to systems compactness and converter sizing. A simple method for the calculations of these two criterions is proposed. The influence of the variation of the main geometrical parameters which define the machine geometry on these criteria are firstly studied. Then a multi-objective optimization process is used to optimize these two design criteria. From the calculations of 20,000 set of machine configurations, a Pareto front is highlighted. Typical points of this Pareto front which corresponds to several DSPM designs are analyzed. The results highlight the interest of proposed method.

Keywords: 

design optimization, doubly salient, dspm; energy ratio, low speed, permanent magnet generators.

1. Introduction
2. Generator description
3. Operating principle and design criterions
4. DSPM design optimization taking into account converter constraints
5. Conclusion
  References

Benelghali S., Benbouzid M.E.H., Charpentier J.F. (2012). Generator Systems for Marine Current Turbine Applications: A Comparative Study. Oceanic Engineering, IEEE Journal of, vol. 37, n° 3, p. 554-563.

Benelghali S.E., Benbouzid M.E.H., Charpentier J.F. (2007). Marine Tidal Current Electric Power Generation Technology: State of the Art and Current Status. Electric Machines & Drives Conference. IEMDC’07. IEEE International, vol. 2, p. 407, p. 1412.

Chau K.T., Qiang S., Ying F., Ming C. (2005). Torque ripple minimization of doubly salient permanent-magnet motors. Energy Conversion, IEEE Transactions on, vol. 20, n° 2, p. 352-358.

Dinyu Q., Ronghai Q., Lipo T.A. (1999). A novel electric machine employing torque magnification and flux concentration effects. Industry Applications Conference, 1999. Thirty-Fourth IAS Annual Meeting. Conference Record of the 1999 IEEE, vol. 1, p. 132-139.

Finite Element Method Magnetics software (FEMM v. 4.2), http://www.femm.info

Harkati N., Moreau L., Zaim M.E., Charpentier J.F. (2013). Low speed doubly salient permanent magnet generator with passive rotor for a tidal current turbine. Renewable Energy Research and Applications (ICRERA), 2013 International Conference on, p. 528-533, 20-23.

Jianzhong Z., Ming C., Zhe C., Wei H. (2009). Comparison of Stator-Mounted Permanent-Magnet Machines Based on a General Power Equation. Energy Conversion, IEEE Transactions on , vol. 24, n° 4, p. 826-834.

Keysan O., McDonald A.S., Mueller M. (2011). A direct drive permanent magnet generator design for a tidal current turbine(SeaGen). Electric Machines & Drives Conference (IEMDC), 2011 IEEE International, p. 224-229, 15-18.

Lawrenson P.J., Stephenson J.M., Blenkinsop P.T., Corda J., Futon N.N. (1980). Variable-speed switched reluctance motors. Electric Power Applications, IEE Proceedings B, vol. 127, n° 4, p. 253-265.

Miller T.J.E. (1985). Converter Volt-Ampere Requirements of the Switched Reluctance Motor Drive. Industry Applications, IEEE Transactions on, vol. IA-21, n° 5, p. 1136-1144.

Miller T.J.E. (1993). Switched Reluctance Motors And Their Control. Oxford University Press, ISBN 9780198593874.

Ming C., Chau K.T., Chan C.C. (2001). Design and analysis of a new doubly salient permanent magnet motor. Magnetics, IEEE Transactions on , vol. 37, n° 4, p. 3012-3020.

Ming C., Chau K.T., Chan C.C. (2001). Static characteristics of a new doubly salient permanent magnet motor. Energy Conversion, IEEE Transactions on , vol. 16, n° 1, p. 20-25.

Ming C., Wei H., Jianzhong Z., Wenxiang Z. (2011). Overview of Stator-Permanent Magnet Brushless Machines. Industrial Electronics, IEEE Transactions on , vol. 58, n° 11, p. 5087-5101.

Pinilla M. (2012). Performance Improvement in a Renewable Energy Direct Drive Permanent Magnet Machine by means of Soft Magnetic Composite Interpoles. Energy Conversion, IEEE Transactions on, vol. 27, n° 2, p. 440-448.

Rezzoug A., Zaïm M.E. (2011). Non-conventional Electrical Machines. Wiley-ISTE, ISBN 9781848213005.

Sadowski N., Lefevre Y., Lajoie-Mazenc M., Cros J. (1992). Finite element torque calculation in electrical machines while considering the movement. Magnetics, IEEE Transactions on, vol. 28, n° 2, p. 1410- 1413.

Saou R., Zaïm M. E., Alitouche K. (2008). Optimal designs and comparison of the doubly salient permanent magnet machine and flux-reversal machine in low-speed applications. Electric Power Components and Systems, vol. 36, n° 9, p. 914-931.

Typical data for SURA® M400-50A, https://cogent-power.com

Wang C.X., Boldea I., Nasar Syed A. (2001). Characterization of three phase flux reversal machine as an automotive generator. Energy Conversion, IEEE Transactions on , vol. 16, n° 1, p. 74-80.

Wang L., Li C. (2011). Dynamic Stability Analysis of a Tidal Power Generation System Connected to an Onshore Distribution System. Energy Conversion, IEEE Transactions on, vol. 26, n° 4, p. 1191-1197.

Wei H., Ming C., Zhu Z.Q., Howe D. (2008). Analysis and Optimization of Back EMF Waveform of a Flux-Switching Permanent Magnet Motor. Energy Conversion, IEEE Transactions on , vol. 23, n° 3, p. 727-733.

Ying F., Chau K.T., Cheng M. (2006). A new three-phase doubly salient permanent magnet machine for wind power generation, Industry Applications, IEEE Transactions on, vol. 42, n° 1, p. 53-60.

Yu W., Zhiquan D., Xiaolin W. (2012). A Parallel Hybrid Excitation Flux-Switching Generator DC Power System Based on Direct Torque Linear Control. Energy Conversion, IEEE Transactions on, vol. 27, n° 2, p. 308-317.

Yuefeng L., Liang F., Lipo T.A. (1995). A novel permanent magnet motor with doubly salient structure. Industry Applications, IEEE Transactions on , vol. 31, n° 5, p. 1069-1078.