Numerical simulations of diffusion-migration processes in thin layers

Numerical simulations of diffusion-migration processes in thin layers

Bartosz Grysakowski 

Department of Chemistry and Corrosion of Metals, Faculty of Foundry Engineering, AGH University of Science and Technology, Reymonta 23, Kraków, 30-059, Poland

Page: 
95-102
|
DOI: 
https://doi.org/10.3166/acsm.40.95-102
Received: 
1 October 2015
|
Accepted: 
7 January 2016
|
Published: 
11 May 2016
| Citation

OPEN ACCESS

Abstract: 

From the laboratory practice point of view one of the most important parameter strongly influencing the effectiveness of experiments is the dynamic of ion-selective electrode response and reaction time on main ion concentration changes in analysed solution. In this work a comparison between two analytical solutions, namely Lindner et al. and Morf et al. models, which are based on assumption of the existence of diffusion layer in analyte and numerical solution of Nernst-Planck-Poisson (NPP) system of equations for simple systems are presented. Obtained results show good agreement in potential-time response as well as in value of membrane potential in steady state for different scenarios of ionic species concentration changes. In contrast to analytical solutions, NPP model offers a description of diffusion and migration processes occurring in membrane layer as well as charge transfer kinetics at phase boundaries.

1. Introduction
2. IHE NERNST-PLANCK-POISSON MODEL
3. SIMULATION RESULTS
4. Conclusions
Acknowledgment

This work is supported by Polish Ministry of Science and Higher Education (15.11.170.547).

  References

[1] W.E. Morf, E. Lindner, W. Simon, Anal. Chem., 47 (9) (1975) 1596-1601.

[2] W.E. Morf, The Principles of Ion-Selective Electrodes and of Membrane Transport, Akademiai Kiado, Budapest 1981.

[3] G.A. Rechnitz, H.F. Hameka, Z. Anal. Chem., 214 (1965) 252-257.

[4] G. Johansson, K. Norberg, J. Electroanal. Chem., 18 (1968) 239-252.

[5] E. Lindner, K. Toth, E. Pungor, Anal. Chem., 48 (7) (1976) 1071-1078.

[6] E. Lindner, K. Toth, E. Pungor, W.E. Morf, W. Simon, Anal. Chem., 50 (12) (1978) 16271631

[7] $\quad$ E. Lindner, K. Toth, E. Pungor, Anal. Chem., 54 (1) (1982) 72-76.

[8] W. Nernst, Z. Phys. Chem., 47 (1904) 52-55.

[9] W.E. Morf, Anal. Chem., 55 (7) (1983) 1165-1168.

[10] T.R. Brumleve, R.P. Buck, J. Electroanal. Chem., $90(1978) 1-31 .$

[11] T. Sokalski, P. Lingenfelter, A. Lewenstam, J. Phys. Chem. B, 107 (2003) 2443-2452.

[12] W. Kucza, M. Danielewski, A. Lewenstam, Electrochem. Comm., 8 (3) (2006) 416-420.

[13] B. Grysakowski, A. Lewenstam, M. Danielewski, Diffusion Fundamentals, $8(2008) 4.1-4.7 .$

[14] B. Grysakowski, J.J. Jasielec, B. Wierzba, T. Sokalski, A. Lewenstam, M. Danielewski, J. Electroanal. Chem., 662 (2011) 143-149.

[15] J.J. Jasielec, T. Sokalski, R. Filipek, A. Lewenstam, Electrochim. Acta, $55(2010), 6836-$ 6848

[16] B. Grysakowski, Zagadnienie odwrotne w symulacjach widm impedancyjnych elektrod jonoselektywnych, PhD Thesis (in Polish), AGH-UST, Krakow 2011. (http://www.chemia.odlew.agh.edu.pl/o_katedrze/B.Grysakowski_PhD_Thesis.pdf)

[17] H. Cohen, W. Cooley, Biophys. J., 5 (1965) 145-162.

[18] H. Chang, G. Jaffe, J. Chem. Phys., 20 (1952) 1071-1077.

[19] J.R. Macdonald, J. Chem. Phys., 61 (1976) 1117-1123.

[20] J.R. Macdonald, J. Electroanal. Chem., 70 (1974) 1.

[21] A. Shatkay, Anal. Chem., 48 (7) (1976) 1039-1050.