Raman spectra analysis of carbon layers on magnesium alloys

Raman spectra analysis of carbon layers on magnesium alloys

Gołabczak, M.

Institute of Machine Tools and Production Engineering, Lodz University of Technology, Stefanowskiego 1/15 Str., Łódź, 90-924, Poland

Page: 
1-8
|
DOI: 
https://doi.org/10.3166/acsm.40.1-8
Received: 
1 October 2015
| |
Accepted: 
7 January 2016
| | Citation

OPEN ACCESS

Abstract: 

In this paper we deal with the investigation of the thin diamond-like layers (DLC) manufactured on magnesium alloys (AZ31) using Plasma Activated Chemical Vapour Deposition (PACVD) method. Raman spectroscopy investigation has been carried out for determining both layer composition and fraction of the diamond-like structure in the layers. The Raman spectroscopy is recognized as the main tool used for surveying of the allotropic content of the carbon layers. It is imposed by the necessity of the distinction not among the different chemical elements but among different bonds of the same chemical element-carbon, or alternatively-among different bonds of carbon with a few other chemical elements-especially hydrogen. During the Raman spectra analysis, both qualitative and quantitative analysis are performed, which is essential for the use of the carbon coatings in the broad range of mechanical technologies. A tool used in these investigations is Voigt peak profile based on Faddeeva function, allowing a very precise comparison of spectra with elimination of specificity of measurement equipment. 

1. Introduction
2. Manufacturing of Carbon Layers
3. Raman Spectroscopy of Carbon Layers
4. Raman Spectrum Description
5. Results and Discussion
6. Conclusions
  References

[1] Brown, S.D.M., Jorio, A., Corio, P., Dresselhaus, M.S., Dresselhaus, G., Saito, R., Kneipp, K.(2001). Origin of the Breit-Wigner-Fano lineshape of the tangential G-band feature of metallic carbon nanotubes. Physical Review B - Condensed Matter and Materials Physics, 63 (15). https://doi.org/10.1103/PhysRevB.63.155414

[2] Hernandez, G.,(1986). Fabry-Pérot Interferometers. Cambridge University Press

[3] Letchworth, K.L., Benner, D.C. (2007). Rapid and accurate calculation of the Voigt function. Journal of Quantitative Spectroscopy and Radiative Transfer, 107 (1): 173-192. 

https://doi.org/10.1016/j.jqsrt.2007.01.052

[4] Twitty, J.T., Rarig, P.L., Thompson, R.E.(1980). A comparison of fast codes for the evaluation of the Voigt profile function. Journal of Quantitative Spectroscopy and Radiative Transfer, 24 (6): 529-532. https://doi.org/10.1016/0022-4073(80)90022-9

[5] Golabczak, M., Konstantynowicz, A.(2011). Quantitative evaluation of the Raman spectra of carbon layers. Defect and Diffusion Forum, 312-315: 265-270. http://www.scientific.net/

ISBN: 978-303785117-3. https://doi.org/10.4028/www.scientific.net/DDF.312-315.265

[6] Golabczak, M.(2011). Characteristics of TiN and NCD layers deposited on magnesium alloys. Journal of Nano Research, 16: 29-35. https://doi.org/10.4028/www.scientific.net/JNanoR.16.29

[7] Golabczak, M., Konstantynowicz, A., Golabczak, A.(2014). Use of cellular automata for modelling of the carbon nanolayer growth on a light alloy substrate. Journal of Nano Research, 26: 159-167. 

http://www.scientific.net/1661-9897/doi: 10.4028/www.scientific.net/JNanoR.26.159

[8] Gołabczak, M. (2011). Special Issues on Magnesium Alloys, pp. 41-66. edited by W.A. Monteiro, In Tech Croatia

[9]Chamos, A.N., Pantelakis, Sp.G., Haidemenopoulos, G.N., Kamoutsi, E.(2008). Tensile and fatigue behaviour of wrought magnesium alloys AZ31 and AZ61. Fatigue and Fracture of Engineering Materials and Structures, 31 (9): 812-821. https://doi.org/10.1111/j.1460-2695.2008.01267.x