Thermal stress restrained specimen test on fiber enhanced asphalt concrete and thermal stress calculation models

Thermal stress restrained specimen test on fiber enhanced asphalt concrete and thermal stress calculation models

Chunshui Huang Zhanfeng Zhang Danying Dao 

College of Civil Engineering, XuChang University, Xuchang 461000, China

School of Civil Engineering, ZhengZhou University, Zhengzhou 450000, China

Henan Tongsheng House Purchasing Co., Ltd., Zhengzhou 450000, China

Corresponding Author Email: 
chunshuihuang@163.com
Page: 
387-403
|
DOI: 
https://doi.org/10.3166/ACSM.42.387-403
Received: 
|
Accepted: 
|
Published: 
30 September 2018
| Citation

OPEN ACCESS

Abstract: 

Based on the thermal stress restrained specimen test (“TSRST”) on polyester fiber reinforced asphalt concrete content, this paper analyzes the effect of fiber volume fraction and draw ratio on low temperature cracking resistance of asphalt concrete, and establishes calculation models for TSRST parameters with consideration of fiber content characteristic parameter’s influence. Through analyzing the features of thermal stress-temperature curve for the complete cooling process on the fiber reinforced asphalt concrete, this paper also establishes models for thermal stress calculation with consideration of fiber content characteristic parameter’s influence. the TSRST test result and theoretical analysis show that the fiber content characteristic parameter can comprehensively reflect the effect of fiber volume fraction and draw ratio on the low temperature cracking performance of the asphalt concrete. within the testing range of this paper, the fiber reinforced asphalt concrete demonstrates best performance at fiber volume fraction of 0.35%, draw ratio at 324 and fiber content characteristic parameter at 1.13

Keywords: 

road engineering, fiber reinforced asphalt concrete, cracking resistance performance, thermal stress restrained specimen test, fiber content characteristic parameter

1. Introduction
2. Test methods
3. Materials and specimen
4. Effect of fiber on low-temperature crack resistance performance of asphalt concrete
5. Model for calculating fiber asphalt concrete thermal stress
6. Conclusion
Acknowledgments

The authors gratefully acknowledge the financial support of the project from the Colleges and Universities Key Scientific Research Projects of Henan Province (Grant No. 16B580003)

  References

Cao L. P., Tan Y. Q., Dong Z. J., Sun L. J. (2006). Evaluation for low temperature performance of SBS modified asphalt using glass transition temperature. China Journal of Highway and Transport, Vol. 19, No. 2, pp. 1-6. http://doi.org/10.3321/j.issn:1001-7372.2006.02.001

Chen H. X., Zhang Z. Q., Hu C. S. (2004). Low-temperature anti-cracking performance of fiber-reinforced asphalt mixture. Journal of South China University of technology (Natural Science Edition), Vol. 32, No. 4, pp. 82-86. http://doi.org/10.3321/j.issn:1000-565X.2004.04.019

Chen J. W. (1991). TSRST for asphalt concrete. Petroleum Asphalt, Vol. 1, No. 1, pp. 46-50. 

Feng K., Xu S. F., Zhang L. B., Li P. (2008). Evaluation of low temperature cracking resistance of asphalt mixtures by means of TSRST method. Journal of Highway and Transportation Research and Development, Vol. 25, No. 9, pp. 83-86. 

Ge Z. S., Huang X. M., Xu G. G. (2002). Evaluation of asphalt-mixture’s low-temperature anti-cracking performance by curvature strain energy method. Journal of Southeast University (Natural Science Edition), Vol. 34, No. 4, pp. 653-655. http://doi.org/10.3321/j.issn:1001-0505.2002.04.026

Guo N. S., Zhao Y. H. (2004). Anti-cracking mechanism of asphalt concrete reinforced by polyester fibers under low temperature. Highway, No. 12, pp. 108-111. http://doi.org/10.3969/j.issn.0451-0712.2004.12.027

Guo N. S., Zhao Y. H., Li G. (2004). Analysis of anti-cracking performance of asphalt concrete reinforced by polyester fibers under low temperature. Journal of Shenyang Arch. And Civ. Eng. Univ, Vol. 20, No. 1, pp. 1-3. http://doi.org/10.3969/j.issn.2095-1922.2004.01.001

Hao P. W., Liu Z. L. (2002). Study on thermal stress restrained specimen test of asphalt mixture. Petroleum Asphalt, Vol. 16, No. 1, pp. 9-11. http://doi.org/10.3969/j.issn.1006-7450.2002.01.002

Hao P. W., Zhang D. L., Hu X. N. (2000). Evaluation method for low temperature anti-cracking performance of asphalt mixture. Journal of Xi’an Highway University, Vol. 20, No. 3, pp. 1-5. http://doi.org/10.3321/j.issn:1671-8879.2000.03.001

JTJ 052-2011. Standard test methods of bitumen and bituminous mixtures for highway engineering. Beijing: China Communications Press.

Jung D., Vinson T. S. (1993). Thermal stress restrained specimen test to evaluate low-temperature cracking of asphalt-aggregate mixtures. Transportation Research Record, No. 1417, pp. 12-20. http://onlinepubs.trb.org/Onlinepubs/trr/1993/1417/1417-002.pdf

Kanerva H. K., Vinson T. S., Zeng H. (1994). Low temperature cracking field validation of the thermal stress restrained specimen test. SHRP-A-401, National Research Council, http://onlinepubs.trb.org/onlinepubs/shrp/shrp-a-401.pdf

Pang H. (2006). The development of testing equipment for behavior of asphalt concrete under low temperature and the research on the behavior of asphalt concrete of asphaltic concrete under low temperature [Master Thesis]. Xi’an: Xi’an University of Technology.

Sebaaly P. E., Lake A., Epps J. (2002). Evaluation of low-temperature properties of HMA mixtures. ASCE Journal of Transportation Engineering, Vol. 128, No. 6, pp. 578-586. 

Tan Y. Q., Zhang L., Liu H., Dong Y. M., Xue Z. J. (2010). An evaluation of several kinds of asphalt mixtures’ low-temperature performance based on TSRST. Highway, No. 1, pp. 171-174.

Tian H. (2012). The study on marshall stability and splitting test of fiber reinforced asphalt mixtures. Shanxi Science & Technology of Communications, Vol. 2, No. 1, pp. 9-12. 

Tian X. G., Ying R. H., Zheng J. L. (2002). Test on thermal stress in asphalt cement sample and its numerical simulation. China Civil Engineering Journal, Vol. 33, No. 3, pp. 25-30. http://doi.org/10.2753/CSH0009-4633350347

Wu X. H., Zhang D. L. (2005). Study of low temperature performance of fiber-enhanced asphalt concrete. Journal of Highway and Transportation Research and Development, Vol. 22, No. 2, pp. 7-9. http://doi.org/10.3969/j.issn.1002-0268.2005.02.003

Yin Y. M., Zhang X. N., Zou G. L. (2010). Investigation into low-temperature performance of asphalt mixtures based on glass transition temperature. Journal of South China University of Technology (Natural Science Edition), Vol. 38, No. 10, pp. 89-93. http://doi.org/10.3969/j.issn.1000-565X.2010.10.017

Yu L. S., Xu Q. Y., Wang J. W., Wu L. Y. (2006). Study on behaviors of asphalt concrete under low temperature. Shui Li Xue Bao, Vol. 37, No. 5, pp. 634-639. 

Zhang D., Xu Y. D., Zhao Y. L. (2009). Method to anti-calculate the parameters in the computing of thermal stress of asphalt pavements based on TSRST. Petroleum Asphalt, Vol. 23, No. 5, pp. 30-33. http://doi.org/10.3969/j.issn.1006-7450.2009.05.007

Zhang S. Q., Ying R. H. (2003). Analogue calculation of thermal stress with relaxation effects. Journal of Changsha Communications Universiy, Vol. 19, No.1, pp. 31-33. http://doi.org/10.3969/j.issn.1674-599X.2003.01.007