Modeling of double diffusion with MHD on an inclined flat plate solar captor with non-uniform boundary conditions. Bouyancy ratio, Prandtl, Schmidt and Eckert numbers effects

Modeling of double diffusion with MHD on an inclined flat plate solar captor with non-uniform boundary conditions. Bouyancy ratio, Prandtl, Schmidt and Eckert numbers effects

Abdelkader Ferrah Mohamed Najib Bouaziz 

Biomaterials and Transport Phenomena Laboratory University of Medea, 26000, Algeria

Corresponding Author Email: 
mn_bouaziz@email.com
Page: 
335-346
|
DOI: 
https://doi.org/10.3166/ACSM.42.335-346
Received: 
|
Accepted: 
|
Published: 
30 September 2018
| Citation

OPEN ACCESS

Abstract: 

 The objective of the present work is to develop a valid model to study heat and mass transfer of MHD free convection around a semi-infinite horizontal or inclined plate associated by chemical reaction, radiation heat flux and internal heat generation or absorption using non local similarity transformations. The credibility of this study impose to consider no-uniform conditions at the wall temperature and concentration (Tw(x) =T∞+axn, Cw(x) =C∞+bxm). Some plain and relatively simplified differential equations have been gotten, in view of a suitable numerical resolution. The expressions of the local Nusselt number, the skin-friction coefficient, and the local Sherwood number are obtained. The effects of different parameters such as Buoyancy ratio-indicating the relative importance of species and thermal diffusion N, Prandtl, Eckert and Schmidt numbers on velocity, temperature and concentration are carried out in this paper. These results can be useful in the complex design of flat plate solar captor used in renewable energy

Keywords: 

MHD, nombres de Schmidt et d’Eckert, reaction chimique, rayonnement, transferts de chaleur et de masse, conditions aux limites

1. Introduction
2. Mathematical analysis
3. Results and discussion
4. Conclusion
  References

Afify A. A. (2004). MHD free-convective flow and mass transfer over a stretching sheet with chemical reaction. Heat Mass Transf., Vol. 40, pp. 495-500. http://dx.doi.org/10.1007/s00231-003-0486-0 

Alam M. S., Rahman M. M., Sattar M. A. (2006). MHD Free convection heat and mass transfer flow past an inclined surface with heat generation. Thammasat International Journal of Science and Technology, Vol. 11, No. 4, pp. 1-8. 

Ali M., Alam M. S., Asaduzzaman A. (2013). Hall effects on steady MHD boundary layer flow and heat transfer due to stretching plate in the presence of heat source or sink. International Journal of Scientific and Engineering Research, Vol. 4, No. 8, pp. 2178-2183. 

Anghel M., Hossain M. A., Zeb S., Pop I. (2001). Combined heat and mass transfer by free convection past an inclined flat plate. Int. J. Appl. Mech., Engng., Vol. 2, pp. 473-497.

Anjalidevi S. P., Kandasamy R. (1999). Effects of chemical reaction heat and mass transfer on laminar flow along a semi infinite horizontal plate. Heat Mass Transfer, Vol. 35, pp. 465-467. http://dx.doi.org/10.1007/s002310050349 

Chamkha A.J., Khaled A. R. (2001). Similarity solutions for hydromagnetic simultaneous heat and mass transfer by natural convection from an inclined plate with internal heat generation or absorption. Heat Mass Transfer, Vol. 37, pp. 117-123. http://dx.doi.org/10.1007/s002310000131 

Chen C. H. (2004). Heat and mass transfer in MHD flow by natural convection from a permeable inclined surface with variable wall temperature and concentration. Acta Mechanica, Vol. 172, No. 3, pp. 219-235. http://dx.doi.org/10.1007/s00707-004-0155-5 

Chen T. S., Tien H. C., Armaly B. F. (1986). Natural convection on horizontal, inclined, and vertical plates with variable surface temperature or heat flux. International Journal of Heat Mass Transfer, Vol. 29, No. 10, pp. 1465-1478. http://dx.doi.org/10.1016/0017-9310(86)90061-x

Chen T. S., Yuh C. F., Moutsoglou A. (1980). Combined heat and mass transfer in mixed convection along vertical and inclined plates. International Journal of Heat and Mass transfer, Vol. 23, pp. 527-537. http://dx.doi.org/10.1016/0017-9310(80)90094-0 

Gebhart B., Pera L. (1971). The nature of vertical natural convection flows resulting from the combined buoyancy effects of thermal and mass diffusion. International Journal of Heat and Mass transfer, Vol. 14, pp. 2025-2050. http://dx.doi.org/10.1016/0017-9310(71)90026-3 

Gray D. D. (1979). The laminar wall plume in a transverse magnetic field. International Journal of Heat and Mass Transfer, Vol. 22, pp. 1155-1158. http://dx.doi.org/10.1016/0017-9310(79)90190-x 

Hossain M. A., Pop L., Ahamad M. (1996). MHD free convection flow from an isothermal plate inclined at a small angle to the horizontal. J. Theoretical and Appl.Fluid Mech., Vol. 1, pp. 194-207.

Kumar P. V., Ibrahim S. M., Lorenzini G. (2017). Impact of thermal radiation and Joule heating on MHD mixed convection flow of a Jeffrey fluid over a stretching sheet using homotopy analysis method. International Journal of Heat and Technology, Vol. 35, No. 4, pp. 978-986. http://dx.doi.org/10.18280/ijht.350434 

Mabood F., Ibrahim S. M., Lorenzini G., Lorenzini E. (2017). Radiation effects on Williamson nanofluid flow over a heated surface with magnetohydrodynamics. International Journal of Heat and Technology, Vol. 35, No. 1, pp. 196-204. http://dx.doi.org/10.18280/ijht.350126

Michiyoshi I., Takahashi I., Seizawa A. (1976). Natural convection heat transfer form a horizontal cylinder to mercury under a magnetic field. International Journal of Heat and Mass Transfer, Vol. 19, pp. 1021-1029. http://dx.doi.org/10.1016/0017-9310(76)90185-x 

Singh N. P., Singh A. K., Singh A. K. (2007). MHD free convection and mass transfer flow past a flat plate. The Arabian Journal for Science and Engineering, Vol. 32, No. 1A. pp. 93-114. https://ajse.kfupm.edu.sa/%5C/articles/321A_09p.pdf 

Srinivasacharya D., Shafeeurrahman M. (2017). Joule heating effect on entropy generation in MHD mixed convection flow of chemically reacting nanofluid between two concentric cylinders. International Journal of Heat and Technology, Vol. 35, No. 3, pp. 487-497. http://dx.doi.org/10.18280/ijht.350305