Numerical simulation EF/VOF to study the influence of the surface condition of the formation of the slats of a nickel deposit produced by plasma spraying

Numerical simulation EF/VOF to study the influence of the surface condition of the formation of the slats of a nickel deposit produced by plasma spraying

Tahar Souad Zirari Mounir Benzerdjeb Abdelwahab Hanini Salah 

LBMPT, University of Medea, University pole, Medea 26000, Algeria

LMA, University of Sciences and Technology, Oran 31000, Algeria

Corresponding Author Email:
30 June 2018
| Citation



The goal of the present work is within the framework of a better comprehension of the production of a coating by plasma projection. It concerns the numerical study of the formation of splats whose stack on the substrate leading to the coating of the substrate. The application of the model, two-dimensional, uses the finite element method and the fluid volume method (VOF) to solve the governing equations, and to enable to study the impact, the spreading out and the solidification of a ceramic drop on a metal substrate and the change of the temperature of the substrate. It predicts the morphology of the slate and eventual splashes during spreading. The results were compared with the results of other authors simulations, obtained under the same conditions. Through this study, it was found that the condition and the preheating of surface play a very important rolein the morphology and formation of splats


finite element, formation of splats, numerical simulation, plasma spraying, volume of fluid (VOF)

1. Introduction
2. Mathematical formulation
3. Results and discussion
4. Results comparaison
5. Conclusion

Abdellah El-Hadj A., Zirari M., Bacha N. (2010)). Numerical analysis of the effect of the gas temperature on splat formation during thermal spray process. Applied Surface Science, Vol. 257, No. 5, pp. 1643-1648.

Ahmed A. M., Rangel R. H., Sobolev V. V., Guilemany J. M. (2001). In-flight oxidation of composite powder particles during thermal spraying. Heat and Mass Transfer, Vol. 44, No. 24, pp. 4667-4677.

Aziz S. D., Chandra S. (2000). Impact, recoil and splashing of molten metal droplets. International Journal of Heat and Mass Transfer, Vol. 43, No. 16, pp. 2841-2857.

Bai Y., Zhao L., Wang Y., Chen D., Li B. Q., Han Z. H. (2015). Fragmentation of in-flight particles and its influence on the microstructure and mechanical property of YSZ coating deposited by supersonic atmospheric plasma spraying. Journal of Alloys and Compounds, Vol. 632, pp. 794-799.

Bussmann M., Mostaghimi J., Chandra S. (1999). On a three- dimensional volume tracking model of droplets. Physics of Fluids, Vol. 11, No. 6, pp. 1406-1417.

Cedelle J., Vardelle M., Fauchais P. (2006). Effect of substrate surface topography and temperature, on millimeter and micrometer sized splat formation and on thermal contact resistance. Journal of Thermal Spray, pp. 6.

Escure C., Vardelle M., Vardelle A., Fauchais P. (2001). Visualization of the impact of drops on a substrate in plasma spraying deposition and splashing modes. Journal of Thermal Spray Thermal Spray, New Surface for a New Millenium, C.C. Berndt, K.A. Khor, and E.F. Lugscheider, ed. ASM International, Materials Park, OH, pp. 805-812.

Fataoui K., Pateyron B., Calve N., El Ganaoui M. (2010). Ecrasement d'une goutte en projection plasma: application au revêtement de matériaux thermiquement dégradables. SPCTS UMR6638 CNRS Université de Limoges, pp. 6.

Fauchais P., Vardelle A., Dussoubs B. (2001). Quo Vadis thermal spraying. Thermal Spray Technology, Vol. 10, pp. 44-46.

Fukunama H., Ohmori A. (1994). Behavior of molten droplet impinging on flat surfaces. Thermal Spray: Industrial Applications, (ed.) C.C. Brandt and S. Sampath, (pub.) ASM International, Materials Park, OH, USA, pp. 563-568.

Gougeon P., Moreau C. (2001). Simultaneous independent measurement of splat diameter and cooling time during impact on a substrate of plasma sprayed molybdenum particles. Journal of Thermal Spray Technology, Vol. 10, No. 1, pp. 76-82.

Goutier S., Vardelle A., Fauchais P. (2012). Understanding of spray coating adhesion through the formation of a single lamella. Journal of Therm Spray Technol, Vol. 21, No. 3-4, pp. 522-530.

Houben J. M. (1988). Relation of the adhesion of plasma sprayed coatings to the process parameters: Size, velocity and heat content of the spray particles. Ph.D. Thesis, Technische Universiteit, Eindhoven, The Netherland.

Madejski J. (1976). Solidification of droplets on a cold surface. International Journal of Heat and Mass Transfer, Vol. 19, No. 9, pp. 1009-1013.

Manual of Ansys ver 11,, USA.

Pakseresht A. H., Rahimipour M. R., Vaezi M. R., Salehi M. (2015). Effect of splat morphology on the microstructure and dielectric properties of plasma sprayed barium titanate films. Applied Surface Science, Vol. 324, pp. 797-806.

Pasandideh-fard M., Bhola R., Chandra S., Mostaghimi J. D. (1998). Deposition of tin droplets on a steel plate: Simulation and experiments. International Journal of Heat Mass Trans, Vol. 41, pp. 2929-2945.

Pasandideh-Fard M., Pershin V., Chandra S., Mostaghimi J. (2002). Splat shapes in a thermal spray coating process: Simulations and experiments. Journal of Thermal Spray Technology, Vol. 11, pp. 206-217.

Pershin V., Lufitha M., Chandra S., Mostaghimi J. (2003). Effect of substrate temperature on adhesion strength of plasma-sprayed nickel coatings. Journal of Thermal Spray Technology, Vol. 12, No. 3, pp. 370-376.

Pershin V., Thomson I., Chandra S., Mostaghimi J. (2001). Splashing of nickel droplets during plasma spraying. Thermal Spray: Surface Engineering via Applied Research, (ed.) C.C. Brendt, (pub.). ASM International, Materials Park, OH, USA, Vol. 2000, pp. 721-727.

Sayed A. (2004). Co-projection d’alumine et d’acier inoxydable par plasma d’arc. Thèse de doctorat en Matériaux Céramiques et Traitements de Surfaces, l’Université de Limoge, Paris.

Tian J. J., Yao S. W., Luo X. T., Li C. X., Li C. J. (2016). An effective approach for creating metallurgical self-b onding in plasma-spraying of NiCr-Mo coating by designing shell-corestructured powders. Journal of Acta Materialia, Vol. 110, pp. 19-30.

Xue M., Heichal Y., Chandra S., Mostaghimi J. (2006). Modeling the impact of a molten metal droplet on a solid surface using variable interfacial thermal contact resistance. Journal of Mater Sci, Vol. 42, pp. 9-18.

Yang K., Fukumoto M., Yasui T., Yamada M. (2013). Role of substrate temperature on microstructure formation in plasma-sprayed splats. Surface & Coatings Technology, Vol. 214, pp. 138-143.

Zhang F., Sun D. Y., Xie J. M., Xu S. M., Huang H. G., Li J., Hou H. T., Wu J. (2017). Application of zirconia thermal barrier coating on the surface of pulling straightening roller. International Journal of Heat and Technology, Vol. 35, No. 4, pp. 765-772.

Zhang H., Wang X. Y., Zheng L. L., Jiang X. Y. (2001). Studies of splat morphology and rapid solidification during thermal spraying. International Journal of Heat and Mass Transfer, Vol. 44, No. 24, pp. 4579-4592.

Zhao Y., Chen H. C., Chuan X. (2015). Numerical simulation of wave slamming on 3D offshore platform deck using a coupled Level-Set and Volume-of-Fluid method for overset grid system. Ocean Systems Engineering, Vol. 5, No. 4, pp. 245-259.

Zirari M. (2011). Modélisation de la construction d’un dépôt par projection thermique: De la formation d’une lamelle à l’empilement des couches. Thèse de doctorat en génie mécanique, Université Saad Dahleb Blida, Algeria.