Promotional effect of iron on the activity of TiO2 in the production of adipic acid

Promotional effect of iron on the activity of TiO2 in the production of adipic acid

Ameur Nawal  Bachir Redouane  Bedrane Sumeya  Choukchou-Braham Abderrahim 

High School of Electrical and Energetic Engineering of Oran (ESGEE), Algeria

Laboratory of Catalysis and Synthesis in Organic Chemistry (LCSCO), Tlemcen, Algeria

Corresponding Author Email:
31 December 2017
| Citation



Designing a new process for the synthesis of adipic acid using green conditions is important to achieve its sustainable development. In this paper, we present a synthesis of adipic acid in one step under a green and mild reaction conditions. The oxidation of cyclohexene to adipic acid using molecular oxygen as oxidant was carried out over different heterogeneous X%Fe2O3/TiO2 catalysts. The catalysts exhibited good conversion (32.5%) and high product (Adipic Acid) selectivity (91.4%). The catalysts were characterized by ICP AES analysis, N2 adsorption–desorption Isotherm (BET), FT-IR, DR/UV–Vis and DRX techniques. A comparison between the effect of the preparation method; impregnation in this work and sol gel method in previous work of the catalyst is discussed


oxidation, cyclohexene, adipic acid, iron, titania

1. Introduction
2. Results and discussions
3. Experimental Section

Ahmed M., El-Katori E. E., Gharni Z. H. (2013). Photocatalytic degradation of methylene blue dye using Fe2O3/TiO2 nanoparticles prepared by sol-gel method. Journal of Alloys and Compounds, Vol. 553, pp. 19-29.

Ameur N. (2014). Thése de Doctorat, Preparation de nano materiaux a base d’or et de fer application en reactions d’oxydation allylique d’olefines. Université de Tlemcen, Algérie.

Ameur N., Bedrane S., Bachir R., Choukchou-Braham A. (2013). Influence of nanoparticles oxidation state in gold based catalysts on the product selectivity in liquid phase oxidation of cyclohexene. Journal of Molecular Catalysis, Vol. 374, pp. 1-6.

Ameur N., Berrichi A., Bedrane S., Bachir R. (2014). Preparation and characterization of Au/Al2O3 and Au-Fe/Al2O3 materials, active and selective catalysts in oxidation of cyclohexene. Advanced Materials Research, Vol. 856, pp. 48-52.

Bart J. C., Cavallaro S. (2015). Transiting from adipic acid to bioadipic acid. part II. biosynthetic pathways. Industrial & Engineering Chemistry Research, Vol. 54, pp. 567-576.

Behera G. C., Parida K., Satapathy P. K. (2013). Sustainable and efficient protocol for the synthesis of a RGO–VPO composite with synergetic stability and reactivity. RSC Advances, Vol. 3, pp. 4863-4866.

Bohström Z., Rico-Lattes I., Holmberg K. (2010). Oxidation of cyclohexene into adipic acid in aqueous dispersions of mesoporous oxides with built-in catalytical sites. Green Chemistry, Vol. 12, pp. 1861-1869.

Cai Z. Y., Zhu M. Q., Chen J., Shen Y. Y., Zhao J., Tang Y., Chen X. Z. (2011). Solvent-free oxidation of cyclohexene over catalysts Au/OMS-2 and Au/La-OMS-2 with molecular oxygen. Catalysis Communications, Vol. 12, pp. 197-201.

Castellan A., Bart J. C. J., Cavallaro S. (1991). Industrial production and use of adipic acid. Catalysis Today, Vol. 9, pp. 237-254.

Cheng C. Y., Lin K. J., Prasad M. R., Fu S. J., Chang S. Y., Shyu S. G., Sheu H. S., Chen C. H., Chuang C. H., Lin M. T. (2007). Synthesis of a reusable oxotungsten-containing SBA-15 mesoporous catalyst for the organic solvent-free conversion of cyclohexene to adipic acid. Catalysis Communications, Vol. 8, pp. 1060-1064.

Cozzolino M., Di Serio M., Tesser R., Santacesaria E. (2007). Grafting of titanium alkoxides on high-surface SiO2 support: An advanced technique for the preparation of nanostructured TiO2/SiO2 catalysts. Applied Catalysis A: General, Vol. 325, pp. 256-262.

Dapurkar S. E., Kawanami H., Komura K., Yokoyama T., Ikushima Y. (2008). Solvent-free allylic oxidation of cycloolefins over mesoporous CrMCM-41 molecular sieve catalyst at 1 atm dioxygen. Applied Catalysis A: General, Vol. 346, No. 1, pp. 112-116. 

Ghosh S., Acharyya S. S., Adak S., Konathala L. S., Sasaki T., Bal R. (2014). Selective oxidation of cyclohexene to adipic acid over silver supported tungsten oxide nanostructured catalysts. Green Chemistry, Vol. 16, pp. 2826-2834.

Jähnisch K., Hessel V., Löwe H., Baerns M. (2004). hemistry in microstructured reactors. Angewandte Chemie International Edition, Vol. 43, pp. 406-446. 

Jiang D., Mallat T., Meier D. M., Urakawa A., Baiker A. (2010). Copper metal–organic framework: Structure and activity in the allylic oxidation of cyclohexene with molecular oxygen. Journal of Catalysis, Vol. 270, No. 1, pp. 26-33.

Jin P., Zhao Z. H., Dai Z. P., Wei D., Tang M., Wang X. (2011). Influence of reaction conditions on product distribution in the green oxidation of cyclohexene to adipic acid with hydrogen peroxide. Catalysis Today, Vol. 175, pp. 619-624.

Lapisardi G., Chiker F., Launay F., Nogier J., Bonardet J. (2005). Preparation, characterisation and catalytic activity of new bifunctional Ti-AlSBA15 materials. Application to a "one-pot" green synthesis of adipic acid from cyclohexene and organic hydroperoxides. Microporous and Mesoporous Materials, Vol. 78, pp. 289-295.

Li B., He P., Yi G., Lin H., Yuan Y. (2009). Performance of gold nanoparticles supported on carbon nanotubes for selective oxidation of cyclooctene with use of O2 and TBHP. Catalysis Letters, Vol. 133, pp. 33.

Meng L., Zhai S., Sun Z., Zhang F., Xiao Z. An Q. (2015). Green and efficient synthesis of adipic acid from cyclohexene over recyclable H3PW4O24/PEHA/ZrSBA-15 with platelet morphology. Microporous and Mesoporous Materials, Vol. 204, pp. 123-130.

Noyori R., Aoki M., Sato K. (2003). Green oxidation with aqueous hydrogen peroxide. Chemical Communications, Vol. 34, No. 16, pp. 1977-1986. 

Nur H. (2006). Modification of titanium surface species of titania by attachment of silica nanoparticles. Materials Science and Engineering: B, Vol. 133, No. 1-3, pp. 49-54. 

Prieto-Centurion D., Boston A. M., Notestein J. M. (2012). Structural and electronic promotion with alkali cations of silica-supported Fe (III) sites for alkane oxidation. Journal of Catalysis, Vol. 296, pp. 77-85. 

Reed S. M., Hutchison J. E. (2000). Green chemistry in the organic teaching laboratory: An environmentally benign synthesis of adipic acid. Journal of Chemical Education, Vol. 77, pp. 1627.

Sato K., Aoki M., Noyori R. (1998). A "Green" route to adipic acid: direct oxidation of cyclohexenes with 30 percent hydrogen peroxide. Science, Vol. 281, pp. 1646-1647.

Schwidder M., Kumar M. S., Klementiev K., Pohl M. M., Brückner A., Grünert W. (2005). Selective reduction of NO with Fe-ZSM-5 catalysts of low Fe content: I. Relations between active site structure and catalytic performance. Journal of Catalysis, Vol. 231, pp. 314-330. 

Sreethawong T., Yamada Y., Kobayashi T., Yoshikawa S. (2006). Optimization of reaction conditions for cyclohexene epoxidation with H2O2 over nanocrystalline mesoporous TiO2 loaded with RuO2. Journal of Molecular Catalysis A: Chemical, Vol. 248, pp. 226-232. 

Vafaeezadeh M., Hashemi M. M. (2014). Simple and green oxidation of cyclohexene to adipic acid with an efficient and durable silica-functionalized ammonium tungstate catalyst. Catalysis Communications, Vol. 43, pp. 169-172.

Vafaeezadeh M., Hashemi M. M., Shakourian-Fard M. (2012). Mesoporous silica-functionalized dual Brønsted acidic ionic liquid as an efficient catalyst for thioacetalization of carbonyl compounds in water. Catalysis Communications, Vol. 26, pp. 54-57.

Van de Vyver S., Román-Leshkov Y. (2013). Emerging catalytic processes for the production of adipic acid. Catalysis Science & Technology, Vol. 3, pp. 1465-1479.

Wang Q., Gürsel I. V., Shang M., Hessel V. (2013). Life cycle assessment for the direct synthesis of adipic acid in microreactors and benchmarking to the commercial process. Chemical Engineering Journal, Vol. 234, pp. 300-311. 

Weiner H., Trovarelli A., Finke R. G. (2003). Expanded product, plus kinetic and mechanistic, studies of polyoxoanion-based cyclohexene oxidation catalysis: The detection of ~70 products at higher conversion leading to a simple, product-based test for the presence of olefin autoxidation. Journal of Molecular Catalysis A: Chemical, Vol. 191, No. 2, pp. 217-252.

Wen Y., Wang X., Wei H., Li, B., Jin P., Li L. (2012). A large-scale continuous-flow process for the production of adipic acid via catalytic oxidation of cyclohexene with H2O2. Green Chemistry, Vol. 14, pp. 2868-2875.