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The path-planning algorithm is the central part of most v. The algorithm should consider 

fixed obstacles, furniture and building style, dynamic obstacles, humans, and pets. 

assistive robots encounter a challenging and complex environment with various obstacles 

during daily work. In addition, to maximize the service per hour, the robot has to select 

the optimum path. These challenges motivate the work toward an efficient path-planning 

algorithm that can handle complex environments. The proposed algorithm employs a 

designed genetic algorithm to look for the best path that maximizes the service area per 

hour. This genetic algorithm is then combined with a dynamic obstacle detection fuzzy 

system. This system relies on fuzzy membership zones. The algorithm decides whether the 

obstacle is dynamic or static according to speed, direction, and size. The Geno-fuzzy path 

planning algorithm is implemented in an assistive robot and tested in an actual 

environment. The algorithm implementation in a simulated environment of 100 BED 

hospitals in Iraq reveals a high-performance result. The test on a large scale without 

obstacles shows the ability of the algorithm to deal with more than 300 service points 

successfully. The local experiment on Webots proved the algorithm's performance to 

overcome dynamic obstacles and achieve safe traveling. 
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1. INTRODUCTION

Assistive Robotics is a challenging research field with a 

significant market and social impact [1]. Assistive robots are 

widely used in domestic and industrial applications. 

Consequently, increasingly new products are introduced on 

the market, products with new or enhanced tasks. Modern 

Assistive Robots (ARs) are designed with intelligent traveling 

techniques primarily used in domestic areas with indoor 

coverage and minimum possible time-consuming. These 

design challenges highlight the utilization of advanced path-

planning algorithms. Smart mobile AR generally needs a 

coverage path planning algorithm. Coverage Path Planning 

(CPP) determines the route that covers all areas of an area of 

interest while avoiding obstacles [2]. Various ARs have been 

studied and improved in the last three decades for many 

service applications. 

For cleaning and monitoring applications, Hu et al. [3] used 

a network of ARs with an algorithm for path planning to 

achieve fast cleaning. Their proposed algorithm was tested 

using five ARs in an uncomplicated environment without any 

obstacles for validation. However, their idea requires many 

ARs to achieve fast cleaning. In 2021, Ruan et al. [4] used the 

A* algorithm as a global path planning algorithm combined 

with a dynamic window algorithm (DWA) for local path 

planning. Their robot is mainly used for autonomous indoor 

cleaning and disinfection work. DWA is low-efficiency in the 

case of local trajectory planning since the robot cannot 

perceive the density of the obstacle [5]. sTetro robot used Zig-

Zag CPP to clean the staircases with an RGBD camera to 

detect the staircases [6].  

The robotic wheelchairs are studied and developed by 

Demetriou [7] and Gillham et al. [8] so that the corresponding 

person can be independent or semi–independent to create 

autonomy for persons who have limited mobility. In addition, 

Rao et al. [9] introduced an intelligent wheelchair supervised 

by Human-Robot Interaction denoted by HRI. Perrin et al. [10] 

implemented semi–autonomous robotic-based learning user 

behaviors system. The proposed system was stated on 

dynamical assumption based on network basics to predict the 

user's path at day and night times and hence assign a 

combination between the user's response and the chosen path 

to realize user habits.  

In addition, AR is implemented widely for the persons with 

heavy motion to control their mobility independently. Kosuge 

Lab [11] developed a walk support system-based obstacle 

avoidance strategy to direct the user to reach the targeted 

location and select a suitable suit. Care-O-bot II is an AR that 

helps elderly persons in their ADL, the system configured by 

Fraunhofer Institute Manufacturing Engineering and 

Automation IPA. The development processes started by 

establishing a share control point scheme to analyze user 

inputs throughout the assistance. On the other hand, Morris et 

al. [12] presented a developed assistive robotic walker to 

provide guidance technology and iCane intelligent cane robot 

introduced by Di et al. [13] to assist patients that have muscle 

weakness in their lower limbs. Dubowsky et al. [14], which 

offered several services such as walk support, navigation, and 
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a health monitoring system extensionally, Lyu et al. [15] 

complemented the system by adding more functions like a call 

to come service. Furthermore, Song and Jiang [16] presented 

a developed model of a walking assistive robot that detects the 

next motion of the users and supports them in slippery and 

unstable areas.  

Additionally, ARs are used for Health care in older people-

based environments. Threatt et al. [17] exposed an 

argumentation to study the ARs that depend mainly on 

environment type and how to support the medical environment 

such as nursing rooms. In the study [18], the innovation has 

inspired the designers to include furniture schemes to be a part 

of the environment to help older people get used to assistive 

robotic models. Furthermore, the home care project offered by 

Sugano and Shirai [19] under the given name WABOT-

HOUSE depends strategically on applying interaction between 

the ARs and an environment (house) to monitor and protect 

user health conditions. Green et al. [20] invented an 

architectural robot named comfortable, which allowed older 

people to use a convenient room with several healthcare 

services. Lauretti et al. [21] suggested and implemented a 

motion planning system based on robotic devices to be adapted 

to assistive rehabilitation behavior. The strategy allows 

performing the personal motion of the sensor with high 

accuracy and efficiently considers the object's new position. 

Further, the system needs to be provided with real-time 

information about the environment and evaluate more patients 

to reach better accuracy during rehabilitation.  

ARs are suitable for people who have impaired vision. AR 

for obstacle detection helps impaired vision by detecting the 

obstacle, processing the detection through an intelligent 

system, and giving an alarm to the user by vibration or sound. 

Mustapha et al. [22] designed a low-cost wearable shoe for 

visually impaired people to alarm obstacles. Smart Cane, 

presented by Dubowsky et al. [14], is widely used to provide 

a safe and independent movement for people suffering from 

vision disability, besides its help in lower limb disability. 

Sharma and Sharma [23] reviewed and discussed the 

challenges facing Smart Cane, Wearable Obstacle Detection 

System, E- Drive, and handheld computer-based Tour Guide, 

which are the primary tools used for impaired vision people. 

In summary, ARs work in different environments for 

various applications, having the common need for flexible and 

general, large-scale path planning and obstacle avoidance 

algorithms. In this paper, a large-scale path planning algorithm 

is designed and implemented for assistive robots that can 

handle the complex environment during daily working activity 

challenges with the optimum path to maximize the service area 

per hour along with safe traveling ability.  

The designed algorithm clusters the large-scale 

environment and then combines the genetic algorithm for the 

best path in the cluster with a fuzzy inference system for 

smooth and safe obstacle avoidance. Based on this summary, 

the paper is discussed.  

 

 

2. METHODOLOGY 
 

The proposed Geno-fuzzy system is mainly a large-scale 

path-planning genetic algorithm (GA) combined with a fuzzy 

controller for smooth traveling in complex environments and 

includes fuzzy membership of obstacles to dangerous zones in 

the path cost calculations. This combination of the genetic 

algorithm and the fuzzy membership is the reason for our 

suggested term, the Geno-fuzzy system path planning 

algorithm. Our algorithm is heavily based on K-Means, 

hierarchical clustering, and GA. The following sections 

summarize the main algorithms and methods for 

implementing our approach.  

 

2.1 Hierarchical Clustering 

 

Hierarchical Clustering (HC) allows clustering points 

without centroids, making it different from other clustering 

algorithms such as K-Means.  Because HC does not rely on 

randomly chosen centroids, it produces the same clusters for a 

given dataset every time it is run. 

To initialize the algorithm, the pairwise distance matrix 

needs to be calculated. Each cell represents the distance 

between the point denoted by row 'i' and the point denoted by 

column 'j'. When executing HC, it is helpful to consider each 

point as a singleton (each point as a cluster). The clustering is 

carried out as follows (Figure 1).  

1. Search the table to find the shortest distance between 

clusters C1 and C2. 

2. Now merge the two clusters C1 and C2, into one new 

cluster Cnew.  

3. Change any distance between Cnew and the remaining 

clusters Ci to… min(||C1-Ci||2, ||C2-Ci||2).  

4. Repeat until N clusters remain. 

 

 
 

Figure 1. Illustrates how inter-cluster routes are determined 

for single linkage clustering using start and endpoints 

 

Note that in the algorithm, we also refer to points as clusters. 

One may think of each point as a single-element cluster. In 

steps 1 and 2, we look for the minimum distance to merge the 

closest clusters into a new cluster. In step 3, we represent the 

distance between two clusters as the distance between their 

closest points. This is referred to as a single linkage. Other 

linkages are listed below. Step 4 then tells us to continue 

grouping until we obtain N clusters: 

Average – The average of all distances between points of two 

clusters. 

Centroid – The distance between computed centroids of two 

clusters. 

Complete – The furthest distance between points of two 

clusters; the opposite of single. 

Starting 

point
Ending 

point

Cluster1

Cluster2

Cluster3
Clusters path

Path in each Cluster
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Median – The center value of all distances between points of 

two clusters. 

Ward – Inner squared distance between points of two clusters. 

Weighted – Weighted average of the distance between points 

of two clusters. 

 

2.2 K-Means 

 

K-Means is a popular and relatively simple way of clustering 

data. Opposite of Hierarchical Clustering, it can produce 

clusters of varying size and location. We will not go in-depth 

with K-Means here as many resources cover the subject. The 

algorithm is as follows. 

1. Randomly Initialize K centroids. 

2. Associate each data point with a centroid based on its 

proximity to the centroid, creating K clusters. 

3. Update each centroid by moving it closer to the mean of its 

cluster. 

4. Repeat steps 2 and 3, pending the centroids no longer move. 

 

2.3 Fuzzy inference system 

 

A fuzzy system is widely used in applications when soft 

transition without complex nonlinear control analysis is 

desirable. Soft navigation of the assistive robot needs a fuzzy 

inference system to achieve smooth traveling among high 

obstacles density environment. In this paper, we use this 

feature of FIS to be part of the system. The FIS usually has 

four major parts: fuzzifier, knowledge base, inference engine, 

and defuzzifier. The fuzzifier translates a real crisp input into 

a fuzzy membership value identifying the input degree of 

membership. Defuzzification translates fuzzy control values to 

crisp numbers. The controller's decision-making logic runs by 

the inference engine. It uses fuzzy inference procedures and 

fuzzy implications to infer the fuzzy control travels. 

 

2.4 Genetic Algorithms 

 

Genetic Algorithms (GA) are commonly used to find a 

solution to complex problems such as path planning 

algorithms. They model the natural process of evolution to 

solve challenging optimization problems. Within the 

algorithm is a group of members referred to as the population. 

Each member of a population represents a candidate solution 

to the problem. They find an optimal solution by changing 

members of a population over many iterations of the algorithm 

or generations. Each of these members is modeled after a 

chromosome. Like the natural world, the chromosomes can be 

crossed over and mutated. The aim is to change the 

chromosomes of a population for the better so that they 

provide a more optimal solution to the problem. These two 

operations and how we implemented them will be covered in 

more in-depth later. Below we show the standard structure of 

GA. 

1. We encode the problem. A bit pattern, string, or 

combination of numbers can represent each chromosome. 

2. Initialize the population randomly. 

3. Compute the fitness of each member of the population.   

4. Based on each individual's fitness, select a percentage of 

the population using a selection operator. 

5. Cross over a certain percentage of the population and 

obtain the next generation. 

6. Mutate a certain percentage of the new population. 

7. Repeat steps 3 through 6 until we reach some terminating 

condition. 

The number of pages for the manuscript must be no more 

than ten, including all the sections. Please make sure that the 

whole text ends on an even page. Please do not insert page 

numbers. Please do not use the Headers or the Footers because 

they are reserved for technical editing by editors. 

 

 

3. IMPLEMENTATION 
 

Geno-fuzzy path planning algorithm is designed to achieve 

safe and fast access of the assistive robot to assist service 

request points as much as possible. The service request points 

number depends mainly on the real word applications the AR 

is serving. We designed the Geno-fuzzy path planning 

algorithm for many service request point applications in 

hospitals, hotels, airports, and universities. The designed 

algorithm structure is illustrated in Figure 2. The algorithm 

starts the global path planning and then feeds the clusters to 

the local path planning algorithm. The local path planning 

algorithm uses the output of FIS for dynamic and static 

obstacles severity with the points in its cluster to provide 

optimum path selection and safe travel of the AS while 

implementing its scheduled duties. The designed algorithm 

implementation is discussed in this section based on Figure 2. 

 

 
 

Figure 2. Geno-fuzzy path planning algorithm structure 

 

3.1 The global path planning algorithm 

 

The designed approach starts by running the global path 

planning algorithm, either Hierarchical Clustering (HC) or K-

Means on the service requested points combined with the 

building map where the AR is working. This produces K 

clusters. We then define the entry point and exit points for each 

cluster. When using HC, these points should already be 

defined. When using K-Means, they must be found by iterating 

over every possible pair of points between two clusters to find 

the minimum distance between the clusters. Once we know the 

path cost between clusters, we can find the optimum possible 

intra-cluster path as shown in Figure 1. 

 

3.2 FIS for dynamic and static obstacles severity 

 

AR needs an obstacle avoidance strategy to achieve safe 

travel while implementing tasks in an environment with 

people working around and furniture fixed on it. Dynamic 

(people) and static (furniture) obstacles must be considered in 

calculating the fitness for each path in GA to detect their 

severity and avoid any harmful possibility. This motivates the 

implementation of FIS to detect dynamic and static obstacles 

severity and include it in the cost function of GA. To FIS 

design FIS, we used Dataset [24] to generate severity 

indicators to feed the GA cost function and provide traveling 

suggestions for safe obstacle avoidance. Five zones represent 

the severity of an obstacle. For every zone of speed and 

distance, seven points are incorporated that begin from 0° to 

90° degrees located on the right side of the robot and 0° to 90° 
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degrees to the left side. For every zone, ten readings are 

recorded along the radial path from obstacle to AR. For zone 

1, the velocity=10 cm/sec, distance = 60 cm, and the covered 

angles are -90,-75,-60,-45,-30,-15,0,15, 30,45, 60, 75, and 90. 

The total samples are 2080. The designed FIS has three inputs: 

relative velocity, relative distance, and the relative angle 

between the AR and the obstacle; outputs are the AR'se 

velocity and steering angle. The outputs are fed to the cost 

function of the local path planning algorithm GA to represent 

the severity of the obstacle to the AR.   

3.3 The local path planning algorithm 

After applying the global path planning algorithm, next, 

each cluster is passed through a Genetic Algorithm (GA) to 

obtain the shortest intra-cluster path for that cluster. The 

genetic algorithm is as follows [25]: 

1. Calculate the path cost for every point pair

2. Initialize the population with different paths

3. Calculate the cost function for each path using

Cost function= Steering Angle ⁄(velocity*Distanceij )

Where Distanceij represents the distance between point i and

point j where point i and point j ϵ Clusterk 

4. Conduct Selection Operator

5. Conduct Crossover Operator to find Child X and Child Y

with the Forward & Backward Methods

6. Conduct Inversion Mutation Operator

7. Repeat 3-6 for Many Iterations

8. Return the optimum path obtained

The above algorithm depicts the flow of our GA. Three

things, in particular, must be explained: encoding and 

selection, crossover, and mutation operators. The members of 

our population are encoded as a possible route through a 

cluster. A possible route would be represented as (1, 5, 4, 7, 6, 

2, 3). Point 1 is the entry point to the cluster, and Point 3 is the 

exit point of the cluster. Everything between point 1 and point 

3 is a possible route through the cluster, and a particular route's 

fitness is its length. It is important to note that neither the 

entrance nor exit point is modified during the GA. The 

selection operator is accomplished by sorting the members in 

ascending order, and a certain percentage is chosen, always 

keeping the number 1 solution. Using the crossover operator, 

two parents are randomly picked to generate two children, 

child x and child y. The crossover operator generates child x 

& y using the forward and backward method. The forward 

method is as follows. 

1. Pick a point at random, point x, and add it to an empty

vector, v.

2. Find the minimum path cost between point x and the next

point in parent 1 and parent 2, pointmin.

3. Append pointmin to v.

4. Repeat steps 2 & 3 for pointmin as point x until all points

are covered.

The algorithm above finds Child x. To find Child y, we use

the backward method. The backward method is the same as 

the forward method, except the next point is the point behind 

point x, not the point in front of point x. 

The mutation operator is then applied to a percentage of the 

population. The mutation operator used is an inversion [25]. 

We randomly select two points within a member and reverse 

the order of points between those two points. After the GA is 

repeated for every cluster generated by HC, we should 

theoretically have an optimized path. 

4. EXPERIMENTS, RESULTS, AND DISCUSSION

To test the Geno-Fuzzy path planning algorithm, we use two 

challenging experimental set-ups: the first one is a large scale 

where we test the global algorithm behavior while facing a 

large number of points to visit, and in the second scenario, we 

test the local path planning with obstacles avoiding ability. 

4.1 Large-scale test 

In this test, the algorithm is analyzed with datasets provided 

by Universität Heidelberg [26], then implemented on one of 

Iraq's territory challenges represented by Bashiqa Hospital. 

The Universität Heidelberg datasets come in many forms. 

Some sets represent cities spread out geographically, some 

have certain patterns, and others are seemingly randomly 

distributed points. The experiments utilize two of the larger 

geographic datasets and two of the smaller geographic datasets. 

These datasets are named usa13509, d15112, att532, and 

rat783 respectively. For the clustering step, we compared K-

means and some implementations of agglomerative 

hierarchical clustering with different numbers of clusters. We 

also tried to find the optimal number of clusters using the 

dendrogram manually, but after increasing the number of 

experiments, we decided not to run multiple clusters and pick 

the best result. Hence, we generated five random values of K 

between 1 and 10 and ran three different clustering algorithms 

with those values of K, keeping the best answer among all runs 

for each algorithm. We ran the global path planning algorithm 

on the clusters to find the best route between clusters and then 

ran the local path planning algorithm on the cities as covered 

points inside each cluster to find the best intra-cluster path. 

Clusters are connected in a minimum path. The closest points 

between every two clusters were found. These closest two 

points are then defined as their respective cluster's start or 

endpoints. After running each clustering algorithm multiple 

times with multiple combinations of parameters on each file, 

the results are shown in Table 1, where we compared the best 

computation and length of the path between different 

configurations. Table 1 also shows the minimum length found 

by the authors [27], and based on that, we computed the error 

value as the difference between our best result and the best 

result of previous works. 

Table 1. Results as compared with optimum path of every 

Dataset 

# 

Recor

ds 

K 
Cluster 

Name 

Best 

Length 

File 

Length 

Best 

Error 

% 

Error 

rat783 1 K-means 8835.19 8806 29.1948 0.33% 

rat783 1 single 8836.68 8806 30.681 0.35% 

rat783 1 complete 8836.26 8806 30.2636 0.34% 

rat783 4 K-means 9249.77 8806 443.772 5.04% 

a280 4 K-means 5094.05 4230 864.0462 20.43% 

a280 4 single 4506.05 4230 276.0504 6.53% 

a280 4 complete 4673.52 4230 443.5247 10.49% 

Results show that our algorithm primarily generated better 

paths with shorter lengths for smaller data sets and smaller 

values of K. Especially by keeping the value of K equal to 1, 

the local path planning algorithm always works great for any 

size of the algorithm, and our results are always better or 

comparable to the references. However, increasing the number 

of clusters, as expected, increases the length of the best path, 

304



 

and this result is entirely dependent on the type of clustering 

algorithm we use. For example, the complete and average 

algorithms always generated the best results, while the median 

and weighted results were often the worst due to the structural 

similarities of the geographic datasets. For K-means, we got 

different results because of the dependency on the 

initialization- although we ran K-means multiple times and got 

the best result out of that. The main reason for this situation is 

the property of the k-means, which always tries to find 

compact circular-shaped clusters. We ran the agglomerative 

clustering algorithm with multiple parameters. Besides 

comparing the path length, we also compared the 

computational times for each clustering algorithm and the 

combination of parameters. As expected, in most cases, K-

means was the fastest clustering method, but in the whole 

process 'single' algorithm always generated the results in a 

better time. We found some cases where k-means generated 

clusters with very few points inside them, while the 'single' 

algorithm for the same case made the cluster sizes more equal 

(not all cases). We could not compare different configurations 

due to the massive number of configurations we used; instead, 

we always kept the best results among all those configurations. 

Due to the lack of ground truth to compare our 

computational time with other approaches in the literature, we 

compared the time between different clustering techniques and 

configurations. It can be concluded that increasing the number 

of clusters significantly improved computational time, 

especially in large datasets. Table 2 shows the computational 

time for some values of K, and as expected, the algorithm 

operates faster on the small clusters, and the result is generated 

quicker. After testing the algorithm's performance with well-

known datasets, the algorithm performs reasonably well in 

most cases.  

 

Table 2. Results for clustering algorithms 

 
Algorithm K Avg. Time Error % 

K-Means 1 441.91 0.33% 

Single 1 503.90 0.35% 

Complete 1 520.32 0.34% 

K-Means 4 383.78 20.43% 

Single 4 364.85 6.53% 

Complete 4 358.28 10.49% 

K-Means 64 547.72 25.14% 

Single 64 443.48 15.22% 

Complete 64 497.31 18.40% 

 

Next, the algorithm is implemented on the Bashiqa Hospital 

ground floor. Bashiqa Hospital is one of a series of 100 beds 

hospitals in Nineveh governorate, and 100-bed hospitals share 

the same map. The map illustrated in Figure 3 contains points 

in orange color that can be visited based on the possible service 

schedule provided to the AR. The entrance points depicted in 

Figure 3 in pink color are the waiting spot of the AR. The total 

number of points is 126 including the entrances and doors, and 

doors are also considered service points. Distances (traveling 

cost) between every pair of points are calculated based on the 

position in the map and the possibility of connection to 

generate the Dataset of the map.  

After implementing the Geno-fuzzy path planning 

algorithm to travel from point A to point B in Figure 3, the 

results show the selected path cost 146 m while the optimum 

path is 135m with an %8 error and an average computation 

cost of 256 seconds. The experiment is implemented on a 

Windows 10, 64-bit intel machine with a 2.50 GHz core i5 

CPU and 8 GB RAM. This implementation is obstacles free 

test and the K=2 clusters. Hence, the FIS did not contribute.  

 

 
 

Figure 3. 100 BED ground floor map; (Left) with points in 

orange color, and (Right) without the points 

 

4.2 Local Geno-fuzzy test 

 

The previous test for the whole map is challenging to be 

implemented in the Webots environment to simulate the 

Global part of the algorithm. Instead, we simulated the global 

and compared the results with known optimum paths in the 

previous section. The algorithm is tested on a complex 

environment, where static and dynamic obstacles are 

presented. We select part of the map, the region surrounded by 

the dotted blue line in Figure 3, to place a variety of obstacles 

and test it using Webots. The designed simulation environment 

is a hospital scenario, as shown in Figure 4. The selected AR 

for simulation is TIAGo Iron, designed by PAL Robotics. 

TIAGo Iron is a two-wheeled human-like robot. The 

simulation started with two dynamic obstacles, a human model 

programmed to walk randomly in different directions. Next, 

we keep adding two human models to the simulation and 

compute the time duration to reach the target for a scheduled 

service plan and the path distance. The scheduled service plan 

for this test is depicted in orange spots in Figure 4. The 

implementation results on Webots with two, four, six, and 

eight dynamic obstacles are summarized in Table 3, and the 

Webots implementation is shown in Figure 5. 

From Table 3, it is clear that increasing the number of 

dynamic obstacles causes an increase in traveling path 

distance and time cost. Moreover, human models hit the AR 

almost exponentially with their number. 

For safety, the proposed algorithm should provide collision-

free traveling. However, we may accept this result since the 

human model is programmed to walk randomly without the 

real-world human sense of collision. 

 

Table 3. Summarized results of implementing a Geno-fuzzy 

path planning algorithm on Webots with two, four, six, and 

eight dynamic obstacles 

 

Number of dynamic 

obstacles 

Distance 

(m) 

Traveling 

time (sec) 

# 

Collisio

n 

Two dynamic 

obstacles 
17.5 228 0 

Four dynamic 

obstacles 
18.3 403 1 

Six dynamic obstacles 20.1 830 4 

Eight dynamic 

obstacles 
25.4 1567 9 
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Figure 4. Webots designed simulation environment with 

hospital scenario 

Figure 5. Experiments of the hospital scenario on Webots 

with (a) Two, (b) Four, (c) Six, (d) Eight dynamic obstacles 

5. CONCLUSIONS

The proposed Geno-Fuzzy path planning algorithm is 

designed to generally support broad types of assistive robots 

in complex environments, mixed with many obstacles during 

daily working activity. The Geno-Fuzzy path planning 

algorithm provides an acceptable impact on Iraq's territory 

when implemented in the simulated environment of 100 BED 

hospitals. The test on a large scale without obstacles shows the 

ability of the algorithm to deal with more than 300 service 

points successfully. The local experiment on Webots proved 

the algorithm's performance to overcome dynamic obstacles 

and achieve safe traveling. For future works, the whole 100-

bed hospital can be included in the Webots environment and 

improve the human model, adding the human sense of 

collision during walking and running to test the algorithm 

fairly. 
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