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ABSTRACT
The study of the biomechanics of the human spine is not yet developed extensively. Recent develop-
ments in this field have heightened the need for observing the spine from a comprehensive perspective 
to understand the complex biomechanical patterns, which underlie the kinematic and dynamic responses 
of this multiple-joint column. Within this frame of exigence, a joint study embracing experimental tests 
and multibody modelling was designed. This study provides novel insights to the segmental contribu-
tion profiles in flexion and extension, analysing different forms of sagittal-plane angles. Moreover, 
the validation of the multibody model contributes to defining the key aspects for a consistent spine 
modelling as well as it introduces the basis for simulating pathological conditions and post-orthopaedic 
surgical outcomes.
Keywords: Lumbar spine multibody model, Lumbar spine phantom, Multi-segment spine, Sawbones 
lumbar spine, Spine biomechanics.

1 INTRODUCTION
At present, experimental and numerical investigations are being exploited hand-in-hand to 
answer current biomechanical issues effectively. Therefore, the implementation of a joint 
approach has permitted relevant steps forward in the understanding of various biomechanical 
aspects, thus permitting relevant improvements in the clinical sphere, such as in surgical or 
biomedical procedures [1–5], implants realisation [6–12] and prosthesis design [13–17]. On 
the one hand, experimental analysis provides further insights into materials characterisation 
at different scales [18–26], objectifies clinical qualitative outcomes [27–35] and lets numeri-
cal models be validated [36]. On the other hand, numerical studies allow studying wider test 
scenarios and inferring physical quantities otherwise tough to figure out because of feasibility 
and costs reasons [37–50]. Despite human joint kinematic mechanism and intersegmen-
tal forces distribution in human joints have revealed to be a fertile topic for this twofold 
approach, far too little attention has been paid to investigate load-motion response of mul-
ti-level segment of human spine. So far, indeed, experimental studies have mainly reported 
dynamic responses of single intervertebral joints (functional spinal units [FSU]), providing 
scant attention to spine’s comprehensive biomechanical behaviour [51,52]. Consequently, 
even the consistency of numerical multi-segment models has been negatively affected since 
in silico models can only be partially validated by those local results [53–55]. In this frame-
work, the current work intends to provide a joint experimental and numerical contribution 
to the representation of multi-level lumbar spine biomechanics. In particular, this study set 
out to assess experimentally the global rotation of a lumbar segment phantom loaded by 
 flexion-extension moments and to validate the corresponding multi-segmental multibody 
model, discerning the compressive load effects.
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2 IN VITRO AND IN SILICO METHODS
This study performed an experimental and numerical joint analysis, providing a compre-
hensive insight on the lumbar segment of human spine. The research work consisted of two 
complementary sections: first, a Sawbones (Sawbones Europe AB, Malmö, Sweden) lumbar 
spine phantom was characterised in flexion-extension motion and second, a multibody model 
was designed in MSC Adams environment (MSC Software, Hexagon Corporate Services 
Ltd., UK). The set up used during experimental tests was re-created in the numerical environ-
ment in terms of geometry and load characteristics applied; this way, a consistent comparison 
between experimental and in silico results was achievable. 

2.1 Experimental tests

The experimental tests were performed on a Sawbones spinal phantom replicating not only 
the lumbar segment but also the adjacent vertebrae T12 and S1 (SKU3430). The phantom 
includes the intervertebral discs and the main ligaments; authors well distinguished the 
anterior and posterior longitudinal ligaments, ligamenta flava, intertransverse ligaments, 
supraspinal and interspinal ligaments. The latter two were created together. 

Flexion and extension tests were realised by applying motion-control linear loadings with 
a linear-torsion test machine (Instron E3000, Instron Corporation, Norwood, MA, USA). 
Each test was run at a displacement rate of 20 mm/min aiming to reduce the viscous effects 
given by the materials representing ligaments and intervertebral discs which could generate 
adverse effects; the maximum linear displacement of the machine actuator was set at 10 mm. 
These parameters were settled so that they could result suitable to the aim of the work and, 
with the intention of future studies involving the phantom, to preserve its integrity. Both 
flexion and extension tests consisted of five different replicas. For each replica, the initial 
position of the model was not in contact with the test machine, thus resulting slacked. Conse-
quently, since the experimental set up did not introduce an initial pre-stressed condition, the 
obtained force-displacement curves were re-aligned at 1N threshold (less than the 2% of the 
maximum load recorded), compensating the initial experimental noise. The experimental set 
up configuration is shown in Fig. 1: the load was transmitted to the upper extremity through 
spherical and translational joints, suitably designed to apply a load with a constant arm with 
respect to the global constraint at S1.

The test machine-phantom couplings were specifically designed in CAD environment and 
3D printed (StratasysuPrint SE Plus, Stratasys Ltd., Eden Prairie, MN, USA) to hold both 
ends of the lumbar phantom; moreover, they were prepared to account for the anatomical 
space orientation of the lumbar spine. Additionally, each test was recorded with a CANON 
EOS 5D MarkII camera (Canon Inc. Tokyo, Japan) in order to analyse vertebrae’s kinematic 
patterns along the sagittal plane. To do so, markers were manually positioned on the centre 
of vertebral bodies and spinous processes and the planar motion tracking was post-processed 
by the means of GOMCorrelate software.

2.2 Multibody modelling

The multibody model was designed starting from the vertebral CAD geometry made avail-
able by Sawbones, which declared a correspondence with the physical model. Passive 
elements were added to characterise the model with the same anatomical features of the 
aforementioned phantom. Averaged density of each vertebra, taking care of both cortical 
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and cancellous bone, was suggested by previous literature works [56–58], and the resulting 
masses were in accordance with previous in vitro studies [58]. Furthermore, facet joints were 
not only modelled as contact forces between the vertebral bodies, but attractive forces were 
also added oriented along the surfaces of the facets in order to limit the relative motion, 
accordingly to the permitted physiological ones.

Ligaments: The model distinguished the anterior (ALL) and posterior (PLL) longitudinal 
ligaments, ligamenta flava (LF right-left), supraspinal (SSL) and interspinal (ISL) ligaments 
and intertransverse ligaments (ITL right-left) for each FSU. The insertion points were posi-
tioned based on anthropometric data, and a particular focus was given to those spanning the 
entire lumbar segment, in order to respect the intrinsic spine’s curvature. In vitro studies 
showed that spine’s ligaments know a pre-strained condition when the spine is at upright neu-
tral position and characterised by stress–strain curve with two main distinguishable regions: 
(1) non-linear segment (toe region) and (2) linear segment. Due to these aspects, it is widely 
spread in multibody modelling literature to reproduce ligaments’ biomechanical behaviour 
through tension-only force constrained to follow the line of sight between their attachments 
[57, 59–63]. Accordingly, all the ligaments were described as a pre-tensioned spring element 
in parallel to a damper. The rest length l0 was inversely computed from the distance between 
the defined attachment points and the pre-strains ε0 . Table 1 reports the assigned initial strain 
of ligaments, ε0, and the strain at the toe-linear regions transaction, 2ε r; all the values fall 
within the physiological ranges provided by in vitro studies [62, 64–66]. Starting from the 
suggested mechanical characterisation given by Putame et al. [2], we developed the following 
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Figure 1: In vitro and in silico set up: (a-b) flexion, (c-d) extension.



 S. Borrelli, et al., Int. J. Comp. Meth. and Exp. Meas., Vol. 9, No. 3 (2021) 229

Where kn corresponds to a stiffness per unit strain [N], calculated from data provided by 
Pintar et al. [63], c is the damping constant, l and vrel are the distance and relative velocity 
of ligament’s attachment points, respectively. The choice to go to adimensioned stiffnesses 
guarantees the removal of possible biases due to different initial lengths between in vitro and 
in silico data. Finally, little adjustments were performed in order to make each taut length fall 
in its corresponding toe region range after the dynamic transitory.

Intervertebral discs: The implementation of the 6DOF of the intervertebral discs was 
obtained by the means of bushing force elements, typically described as non-coupled stiff-
ness and damping matrices. Rotational and translational stiffnesses were initially extracted 
from reference values [58, 67–69], and then slightly adjusted with respect to the experimental 
behaviour revealed. Intervertebral discs were supposed at rest in the original spine stance of 
Sawbones CAD geometry. The orientation of discs’ reference system was set for each FSUin 
order to comply withits local geometry. Therefore, the longitudinal axis was directed along 
the conjunction line of the centroids of the adjacent endplates, while the anterior–posterior 
axis parallel to the line joining the endplate centroid and the spinous process midpoint of the 
upper vertebra. The subsequent third axis was directly obtained by the previous ones to get a 
right-handed reference system.

Pre-load: A compressive pre-load aims to simulate the physiological compressive load 
that the lumbar spine encounters supporting the weight of the upper part of the body. The 
pre-load was designed in forms of a follower load of 800 N, also satisfying the absence of 
induced transmission of moment or shear forces to the vertebrae. In the multibody environ-
ment, this kind of pre-load was created by compressing each bushing with a force acting 
along each disc’s longitudinal axis, approximately passing through each FSU’s instantaneous 
center of rotation [70–73].

Contacts: The only spots where contacts could take place where in correspondence of 
adjacent vertebrae’s facet joints. Thus, deformable contacts were settled to be consistent with 
the particular cartilage present therein. The following relationship was adopted:

 
F K Cc

e
= + ( )δ δ δ�  (2)

Where K is the contact stiffness, δ  and �δ  are the penetration depth displacement and velocity, 
respectively, e is a non-linear scaling factor, and C is a sigmoid damping function based on δ . 
Values were extracted by previous studies [53]. Due to the small entities of the displacement 
applied, contacts appeared during extension only at the end of the motion. 

Ligaments

ALL PLL LF ISL ITL SSL

5.3% 6% 7.0% 4.3% 7.0% -6.0%

14.0% 13.0% 18.0% 12.0% 15.0% 12.0%

Table 1:  Values of pre-strain ε0 and strain at transaction from toe region to linear region, 
ε εl r= 2 . All the ligaments presented in the multibody model are listed. ALL:  
anterior longitudinal ligament, PLL: posterior longitudinal ligament, LF: ligamen-
tum flavum, ITL intertransverse ligament, SSL: supraspinous ligament.

ε l

ε0
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Two multibody models, differing only for the presence of the compressive follower-load, 
were compared with the experimental results in a twofold way, dynamic and kinematic. On 
the one hand, flexion-extension moment-angle behaviours of the in silico models were com-
pared to the one resulted experimentally. Experimentally, the moment was obtained from 
the sagittal vertical force measured by the load-cell of the testing machine multiplied by its 
constant arm; the angle measured, named ϑS T1 12, , was formed by the vertical axis and the line 
joining the center of mass of S1 (obtained from the multibody and add as a marker on the S1 
constraint) and the T12 vertebral body center. The angular displacement was post-processed 
thanks to the motion tracking tool.

Vertebrae’s range of motions (ROM) were considered in a double form: first, we measured 
the variation of the angle described by the vertical axis and the line joining the centres of mass 
of adjacent vertebral bodies (CMVB), ∆βrel; second, we measured the variation of the hori-
zontal angles of the lines joining the center of the spinous processes and their corresponding 
vertebral CMVB., ∆ϕh. The ∆βrel provides details about the relative displacements between 
vertebrae, while the ∆ϕh gives evidence of the variation of orientation of each vertebra.

3 RESULTS

3.1 Dynamic aspects investigation

Experimental tests reveal an optimal reproducibility both in flexion and extension motion- 
control loads: in flexion, the momentum calculated at the maximum angular displacement 
(2°) shows a standard deviation of 0.15 N*m less than the 4.4% of the corresponding mean 
value. Concerning the extension moment, the deviation from one replica to the other is even 
less (0.05 N*m, 2.1 %). Figure 2 outlines, concurrently with the experimental results, the 
moment-angle profile of the two in silico models: the one without preload (nFL) and the 
other subjected to 800 N of follower load (FL). Interestingly, the rachis phantom shows a 
stiffer response in flexion than in extension along the small angular displacements investi-

Figure 2:  Bending moment applied vs angular global displacement ϑS T1 12, . The experimental 
range represents the range of variation obtained from the five test replicas. (a) 
Flexion motion; (b) extension motion.
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gated. Concerning the numerical curves, the follower load has a marked impact as the angle 
increases. In both cases, the application of the follower-load enables the model to describe 
better the experimental pattern.

At 2° of flexion, the nFL curve diverges from the experimental mean value by a deviation 
of 0.8 N*m (23%). Conversely, the FL curve overestimates the experimental results with a 
lower error, maximum at 2° of bending: 0.31 N*m (9%).

In extension, the FL curve displays a satisfactory moment-angle profile with respect to 
experimental data: the model load curve fell within the experimental range for most part of 
the plot, and the maximum separation from it, amounts to -0.16 N*m (-6.9 %). The model 
without pre-load assumes more deviation from all the other cases as the maximum extension 
moment differs of -0.71 N*m (- 30.2%).

3.2 Kinematic aspects investigation

Finally, the kinematic analysis demonstrates good consistency between the in silico mod-
els and the lumbar phantom. Figures 3 and 4 illustrate the ROM (∆βrel and ∆ϕh) calculated 
as the difference of the angles at rest configuration and at 2° bended. Results show a 
cranio-caudally angular displacement decreasing pattern: upper vertebrae display greater 
mobility than the distal ones. The high reproducibility of the experimental tests is con-
firmed by the low variability of kinematic results, almost negligible. Furthermore, extension 
motion-control loading induces wider variation of angles for upper vertebrae: T12-L1 and 
L1-L2 ∆βrel are almost 1° greater than in flexion. This cannot be said for the lower part of 
the lumbar segment, where L3-L4 behaviour is almost the same in the two circumstances 
and L4-L5 demonstrates a more pronounced mobility in flexion (0.5° greater). Therefore, 
the gradient of ∆βrel ranges along the spine segment reveals being higher in extension 
than in flexion. The chart in Fig. 4, reporting the results of ∆ϕh, illustrates interesting 
aspects: the direction of the motion-control loading seems not varying the orientation 
variances, except for the extremes of the lumbar segment. Indeed, L1 registers an incli-
nation greater of 0.6° in flexion than in extension, while L5’s pitch angle decreases of  
almost 0.5° in extension.

Figure 3:  Variation of the angle created by two consecutive CMVBs and the vertical axis, 
∆βrel. Experimental values (grey) are presented with their range obtained from the 
five replicas. (a) Flexion motion applied; (b) extension motion applied.
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Finally, observing the in silico models, it is possible to assess that the follower loaded 
multibody model reveals a very strong kinematic accuracy since in almost all cases it  provides 
angular values included in the experimental range. On the contrary, the multibody model not 
pre-compressed generally shows larger estimates.

4 DISCUSSION
The purpose of the current study was to determine the comprehensive behaviour of the lum-
bar spine phantom when subjected to flexion-extension motion-control load. Moreover, two 
multibody models were recreated starting from its geometry to understand whether the intro-
duction of a follower load provided greater adherence to the experimental results.

In our study, the load resulted applied to the extremity of the phantom is consistent with 
the ones applied during in vitro tests [70, 74]. Anyway, our study makes use of a linear 
motion-control load to execute the torque actions on the phantom, whereas in literature, the 
adoption of a pure-moment loading is spread [75]: the resulted stiffer behaviour in flexion 
than in extension is not fully in accordance with in vitro state of art [70, 76–78]. Authors sup-
posed that the reason of this discrepancy could be led by the way of load application, which 
could influence the behaviour of the spine (motion-control vs load-control). Moreover, the 
motion was not applied directly to the extremity of the phantom but through a constant arm. 
Finally, another aspect to keep into consideration is that in [77] the bending stiffness of a 
lumbar phantom resulted greater in flexion than in extension as highlighted in this study. 

Finally, the designing of the numerical multibody models corroborates the effects of the 
follower load depending on the direction of the bending, already registered in in vitro and in 
silico studies. Anteriorly, the follower load induces an increasing bending ROM under for a 
given load, while posteriorly, it is the opposite.

Besides that, the introduction of the follower load makes the multibody model fit to the 
experimental results, both in terms of moment-angle profile and kinematic analysis and allows 
the numerical multibody model to be considered validated with respect to the Sawbones 
phantom. Therefore, starting from the validated numerical model both spinal pathological 
conditions and post-orthopaedic surgical outcomes can be consistently simulated. This way, 
future studies will be pursued to objectify their effects and compare them with the corre-

Figure 4:  Singular vertebra angle, ∆ϕh, formed by spinous processes - CMVB connecting line. 
Experimental values (grey) are presented with their range obtained from the five 
replicas. (a) Flexion motion applied; (b) extension motion applied.



 S. Borrelli, et al., Int. J. Comp. Meth. and Exp. Meas., Vol. 9, No. 3 (2021) 233

sponding physiological results. To the best knowledge of the authors, this aspect has not been 
exploited yet in spinal biomechanics literature[79, 80].
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