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ABSTRACT
In this study, a localized collocation method called generalized finite difference method (GFDM) 
is developed to solve the anomalous diffusion problems on surfaces. The expressions of the surface 
Laplace operator, surface gradient operator and surface divergence operator in tangent space are given 
explicitly, which is different from the definition of differential operators in the Euclidean space. Based 
on the moving least square theorem and Taylor series, GFDM shares similar properties with stan-
dard FDM and avoids mesh dependence, enabling numerical approximations of the surface operators 
on complex 3D surfaces. Simultaneously, a standard finite difference scheme is adopted to discretize 
the time fractional derivatives. By using GFDM, we succeed in solving both constant- and variable-
order time fractional diffusion models on surfaces. Numerical examples show that the present meshless 
scheme has good accuracy and efficiency for various fractional diffusion models.
Keywords: anomalous diffusion, constant- and variable-order time fractional diffusion models, gener-
alized finite difference method, surface PDEs.

1 INTRODUCTION
Anomalous diffusion phenomenon [1] is widespread in porous media mechanics [2], 
non-Newtonian fluid mechanics [3], viscoelastic mechanics [4], soft matter mechanics [5] 
and so on [6, 7]. Compared with non-linear diffusion models, fractional order diffusion mod-
els show better characteristics in describing the anomalous diffusion behaviour, such as less 
parameters and easier numerical computation. And due to fact of non-local property [8], 
fractional derivatives can also be used to describe the complex non-Markov systems [9]. 
Fractional diffusion models, which describe anomalous diffusion behaviour very well, have 
been studied for many years. Usually, in most cases, it is extremely difficult and even impos-
sible to find analytical solutions to fractional differential equations; so, at present, much work 
about fractional diffusion is focused on numerical solution in the whole computational space.     

However, in recent years, with increasing attractiveness of partial differential equations 
(PDEs) defined on surfaces or manifolds [10–12], there are only a few reports of fractional 
order equations defined on surfaces. Surface PDEs or surface operators are a type of PDEs or 
operators defined in tangent space, which are different in Euclidean space. Also, most exist-
ing surface PDE solvers can be classified into two types: the so-called intrinsic methods and 
embedding methods. The first one attempts to solve PDEs using surface-based meshes and 
coordinates, while the second one attempts to extend the PDE to the embedding space. Con-
structing a good meshing of a manifold or surface could be a very difficult process. In this 
study, we employ a standard finite difference method for temporal discretization and intro-
duce the meshless generalized finite difference method (GFDM) [13] for spatial discretization 
to solve constant- and variable-order fractional diffusion equations on surfaces.

The history of meshless methods [14–17] dates back to the last century. In meshless meth-
ods, a set of nodes are generated instead of meshes. The GFDM adopted in this study is based 
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on Taylor series expansions and weighted least-squares method to approximate the deriva-
tives at each computational node by the linear summation of neighbouring nodal values. And 
then, a sparse linear system is constructed and solved by the standard sparse matrix solver. 
This method was first proposed by Liszka and Orkisz [18] in 1980s and was gradually 
improved and perfected until Benito et al. put forward the most advanced version in 2001 
[19], including mesh generation, local approximation and automatic selection of nodes. In 
addition, GFDM, as a localized collocation method, is very suitable for large-scale problems 
and till now, GFDM has been successfully applied in many areas [20–22].

This paper first applies the GFDM to 3D constant- and variable-order fractional diffusion 
problems. This paper is organized as follows: methodology, numerical examples and discus-
sions, and conclusions. In Section 2, the surface differential operators and methods referred 
above are described specifically. In Section 3, several examples and discussion are presented. 
And lastly, in Section 4, the conclusions are given.

2 METHODOLOGY
In this section, we focus our attention on the theory of fractional diffusion model, meshless 
GFDM and surface differential operators.

2.1 Time fractional anomalous diffusion model

Without loss of generality, the constant- and variable-order fractional diffusion equation 
defined on surfaces can be followed by the equation
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The variable-order time fractional derivative mentioned above can be defined by the 

equation
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When a t( ) is a constant or independent of t, eqn (3) can be simplified to the following 
famous Caputo constant-order time fractional derivative:
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in which Γ  is the gamma function. In a way, eqn (4) is a special case of eqn (3).
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By using standard FDM, the temporal fractional derivative can be discretized as
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where a bj j,  are known coefficients. More details on temporal discretization could be found 
in [23].

2.2 Time fractional anomalous diffusion model

In general, GFDM is an extension of standard FDM; so, the resulting expression is similar, 
which is as follows:

 

∂
∂

= + = ∈ =
= ≠
∑u

x
w u w u k d

k i
i
x i

i j
x i

j j i

ns

j i
k k, ,

,

, , , , , ,
1

1 2  x ξ Ξ �  (6)

 

∂
∂ ∂

= + = ∈
′′ = ≠

′′ ′′∑
2

1

u

x x
w u w u k

k k i

i
x x i

i j
x x i

j j i

ns

j i
k k k k, ,

,

, , x ξ Ξ == ′′ = +1 2 1, , , , , , , ,� �d k k k d  (7)

For better understanding, two sketches including 2D and 3D are shown in Fig.1.
For a given central node (both including interior and boundary nodes) in the subdomain, 

Taylor series is used to construct the numerical differential scheme:
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. Considering the remainder term of eqn (8), the residual 

function B u( )  is defined as
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Figure 1: Sketch of the nodes distribution and subdomain: (a) 2D and (b) 3D.
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The weight function b r j( )  used in this study is
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It is noted that this method requires minimizing eqn (9), after which we could obtain a 
linear system
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in which k d k d k k k d k k k d= = ′ = + ′′ = +1 2 1 2 1 1, , , ; , , , ; , , , ; , , ,� � � � , ns is the number of 
the neighbouring nodes and
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2.3 Surface differential operators

The surface gradient operator is an extension of standard gradient operator from the Euclid-
ean space, which could be given as

 ∇ = ∇s : ,p  (15)

in which p x x I nn( ) =   ( ) = −
� �

…
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p p pd d
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1 1, , :  and Id
 is the d d×  identity matrix.

Similarly, the Laplace–Beltrami operator is given by

 ∆ = ∇ ⋅∇s s s: .  (16)

A significant relation between surface operators and Euclidean operators for any suffi-
ciently smooth function could be found in [24]:
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where ∇ = ∇ − ∂ ∆ = ∆ − ∂ − ∂ ( )
s s su u u u u H u u: , : .n n n n      

2 , and J  is the Jacobian operator in 
Euclidean space.

Once the relationship between surface operators and Euclidean operators is given explic-
itly, the numerical expressions could be found by using eqns (6) and (7).

3 NUMERICAL EXAMPLES AND DISCUSSION
In this section, three examples are provided including the single and coupled constant-order 
and the coupled variable-order fractional diffusion models. To quantify the accuracy and 
effectiveness of our numerical solutions, we introduce the root mean square error (RMSE) 
measures as follows:
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wherein N is the total number of discretization nodes and �u t u tj jx x, , ,( ) ( )  stand for the 
numerical solution and analytical solution, respectively.

3.1 Example 1: single and coupled constant-order fractional diffusion models

3.1.1 Single diffusion equation on the sphere
In this example, the governing equation is given by
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wherein a =
1

2
 and 1ud = . The exact solution is expressed as

 u t x t y z, x( ) = ⋅ + +3 3 32  (20)

In this test example, three kinds of time integration methods including explicit time inte-
gral method (q = 0), implicit time integral method (q = 1) and Crank–Nicholson method  
(q = 0 5. ) are considered. But it has been proved that explicit time integral method is usually 
limited in the criterion between time step and space step, which leads to poor accuracy and 
efficiency. Therefore, the (1) implicit time integral method and the (2) Crank–Nicholson 
method are adopted in this example.

It is easy to find from Fig. 2 that the GFDM combined with implicit time integral method 
(q = 1) and with Crank–Nicholson method (q = 0 5. ) both show better stability and accuracy. 
However, from eqn (5), we could find if q = 0 5. , the computation is more than the case when 
q = 1. Therefore, implicit time integral method is chosen in subsequent examples. Also, in this 
test, the effect of the number of neighbouring nodes is taken into consideration. Usually, the 
number of adjacent nodes should be more than twice the number of terms in the Taylor 
expansion. To deal with more complex surfaces, we will take 50 neighbouring points by 
default to ensure its accuracy and stability.

3.1.2 Coupled diffusion equations on the complex surfaces
In this test, we expand single diffusion equations to coupled diffusion equations on the com-
plex surfaces. The governing equation is given as
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wherein a = 0.5  and d du v= = 1 , and the exact solution is given as
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Figure 3 shows the distribution of absolute error under red blood cell shape, torus shape 
and tumour shape. Table 2 gives more results on complex surfaces such as Bean, Bretzel, 
Cross and DC surfaces. Although the accuracy of the GFDM in solving fractional PDEs with 
complex solutions is less, we could still conclude that GFDM combined with implicit time 
integration method possesses a good accuracy and stability in solving single constant-order 
fractional PDE.

3.2 Example 2: coupled variable-order fractional diffusion models on surfaces

Similarly, we changed constant-order fractional PDEs into variable-order fractional PDEs 
and the governing equation is given as
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wherein a d d= + = = =0 8 0 2 0 2 1. . / , . ,t T T u v , and the exact solution is given as
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Figure 2: Convergence results against the number of nodes (a) and time (b) on sphere.
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Figure 3:  Distribution of absolute error u(left) and v(right) at t = 0.5 on (a) RBC, (b) torus and 
(c) tumour.

Table 1: RMSE on different surfaces at t = 0.5.

Shape Sphere Bean Bretzel Cross DC RBC Torus Tumour

N 2500 3600 3974 2010 5024 4096 5256 3600

RMSE(u) 1.43E-
04

9.74E-
04

8.87E-
03

3.90E-
03

2.75E-
03

3.46E-
03

3.36E-
03

4.84E-
03

RMSE(v) 1.21E-
04

2.10E-
03

6.70E-
03

2.86E-
03

1.78E-
03

2.62E-
03

2.37E-
03

8.29E-
03
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Figure 4 shows the distribution of absolute error under red blood cell shape, torus shape 
and tumour shape. Table 2 gives the RMSE under different complex surfaces. Figure 4 and 
Table 2 show that the accuracy of GFDM in solving coupled variable-order fractional diffu-
sion equations on surfaces is good. Compared with constant-order fractional PDEs on 
surfaces, variable-order fractional PDEs exhibit stronger non-linearity, which shows that the 
promoted method has a good robustness.

4 CONCLUSION
In this study, the GFDM was developed to solve constant- and variable-order fractional dif-
fusion equations on 3D complex surfaces. Due to the explicit relationship between surface 

Figure 4: Distribution of absolute error u(left) and v(right) at t = 0.2 on (a) RBC, (b) torus and 
(c) tumour.
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operators and Euclidean operators, the surface operators can be approximated directly by 
GFDM. This method is different from other embedding methods in that it only requires ‘scat-
tered’ nodes on the surface and the corresponding normal vectors. Three examples including 
single and coupled constant- and variable-order fractional diffusion equations on 3D complex 
surfaces were provided to verify the accuracy, effectiveness and robustness of the promoted 
method.
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APPENDIX
The 3D surfaces used above are described as follows:
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Table 2: RMSE on different surfaces at t = 0.2.

Shape Sphere Bean Bretzel Cross DC RBC Torus Tumour

N 4096 3600 8906 2010 5024 4096 5256 3600

RMSE(u) 1.00E-
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1.00E-
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