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ABSTRACT
In this study, we investigate the distribution of eigenfrequencies of boundary integral equations (BIEs) 
of two-dimensional elastodynamics. The corresponding eigenvalue problem is classified as a nonlin-
ear eigenvalue problem. We confirm that the Burton-Miller formulation can properly avoid fictitious 
eigenfrequencies. The boundary element method (BEM) is expected as a powerful numerical tool for 
designing sophisticated devices related to elastic waves such as acoustic metamaterials. However, the 
BEM is known that it loses its accuracy for certain frequencies, called as fictitious eigenfrequencies, 
for problems defined in the infinite domain. Recent researches It has also been revealed that not only 
the real-valued eigenfrequencies but also the complex-valued ones may affect the accuracy of the BEM 
results. We examine the distribution of complex eigenvalues obtained by BIEs for time-harmonic elas-
todynamic problems with the help of the Sakurai-Sugiura method which is applicable to nonlinear 
eigenvalue problems. We also examine its relation to the accuracy of the BEM numerical results. We 
also discuss an appropriate choice of the coupling parameter from a viewpoint of the distribution of 
fictitious eigenfrequencies.
Keywords: Boundary integral equation, Burton-Miller method, Elastodynamics, Fictitious eigenfre-
quency, Sakurai-Sugiura method, Transmission problem

1 INTRODUCTION
The boundary element method (BEM) is one of the main tools for numerical analyses of 
various boundary value problems together with the finite element method, finite difference 
method, and so forth. One of the most remarkable features of the BEM is that it can deal with 
unbounded domains rigorously without any approximation. This unique property enables 
us to analyse wave propagation problems, e.g. acoustic, elastic, and electromagnetic waves, 
defined in the unbounded domain with a high accuracy.

However, the BEM suffers from singularity treatment of the boundary integral equations 
(BIEs), and also it loses the uniqueness of the solution at certain frequencies, though the 
original boundary value problem has a unique solution. Those specific frequencies are 
called fictitious eigenfrequencies, and there existence is a serious drawback of the BEM, 
especially when the fictitious eigenvalues are real-valued. Thus, some modified BIEs have 
been proposed to avoid the real-valued fictitious eigenfrequencies, e.g. CHIEF method [1], the 
Burton-Miller formulation [2], the Müller formulation [3], and the PMCHWT formulation [4].

Recent studies have revealed that not only real-valued eigenfrequencies but also complex- 
valued ones with small imaginary parts affect the performance of the BEM [5, 6]. This implies 
that the fictitious eigenfrequency problem may not be avoided even though the modified 
BIEs are used. In addition, the exterior wave problems and transmission problems also have 
complex-valued resonance frequencies, which are called true eigenfrequencies in this study. 
They also affect the boundary element analysis when their imaginary parts are small. We will 
show later that they are rather small and have bad effects on the analysis in a certain case.
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In this study, we investigate the eigenfrequencies of the Burton-Miller-type BIEs in a 
two-dimensional elastodynamic transmission problem and its relation to the performance of 
the BEM. The Sakurai-Sugiura method (SSM) [7], which converts a nonlinear eigenvalue 
problem resulting from the discretized BIEs into a generalised eigenvalue problem, is 
employed for calculating the eigenfrequencies. Also, we discuss an appropriate choice of 
the coupling parameter of the Burton-Miller formulation for the elastodynamic problem.

2 BOUNDARY INTEGRAL EQUATIONS

2.1 Problem statement

In this study, we consider a two-dimensional elastodynamic transmission problem. As shown 
in Fig. 1, let Ω(1) be an unbounded domain which is filled with a linear isotropic elastic 
medium whose mass density is r(1) and Lamé’s constants are l(1) and m(1). Similarly, let 
Ω Ω( ) ( )2 2 1=  \  be a bounded domain with the mass density r(2) and their Lamé’s constants 
l(2) and μ(2). Assuming a plane-strain condition and time harmonic oscillations with time 
dependence e-iωt, where ω is the angular frequency. The displacement u and the stress σ 
in Ω Ω

( ) ( )1 2
∪   are governed by the following transmission problem:

 s r wji j iu,
( ) ( )( ) ( ) ,x x x+ = ∈1 2 10 Ω  (1)

 s r wji j iu x,
( ) ( )( ) ( ) ,x x+ = ∈2 2 20 Ω  (2)

 ui i i
( ) ( )( ) ( )( : ( )) ,1 2x u x u x x= = ∈Γ   (3)

 s sji j ji j i x( ) ( )( ) ( ) ( ) ( )( : ( )) ,1 2x n x x n x t x= = ∈Γ   (4)

 Radiation condition for ui
sc ( ) ,x xas → ∞  (5)

Figure 1: Problem statement.
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where Γ Ω Ω= ∂ = ∂
( ) ( )1 2  is the boundary, n is the unit normal vector on Γ outward to 

Ω
(1) and uin and usc = u − uin are the incident and scattered waves, respectively. Also, 

u(ν) and σ(ν) (ν = 1, 2) denote the boundary traces of u and σ from Ω(ν) to Γ, respectively. 
The wavenumbers of the longitudinal wave kL

( )ν  and the transverse wave kT
( )ν  in Ω(ν) are 

given by

 kL
( )

( )

( ) ( )
,n

n

n nw r
l m

=
+ 2

  (6)

 kT
( )

( )

( )
,n

n

nw r
m

=  (7)

3 EIGENFREQUENCIES OF THE BIES

3.1 The Burton-Miller-type BIEs in the elastodynamic transmission problem

We obtain the following BIEs equivalent to the transmission problem (1)–(5) by the Burton- 
Miller formulation:

 
1

2 2
1 1 1 1 1u t D N u S D t u Ci i ij ij j ij ij j i ijkl+ + +( ) − +( ) = +( ) ( ) ( ) *( ) (in ))

, ,u nk l j
in   (8)

 
1

2
02 2u D u S ti ij j ij j− + =( ) ( ) ,  (9)

where α ∈ ℂ is the coupling parameter, Sij
(v) ,  Dij

(v) ,  Dij
*(v)  and Nij

(v) (v , )= 1 2  are the integral 
operators defined for a scalar function w by

 S w x G x y w yij ij y
( ) ( ) , ,n n( )( ) = ( ) ( )∫Γ

Γd  (10)

 D w C G x y n y w yij kljm ki l m y
( ) ( )

,
( )( ) , ,n n n( ) = − ( ) ( ) ( )∫x v.p.

Γ
Γd  (11)

 D w x C G x y n x w yij klim kj l m y
*( ) ( )

,
( )( ) , ,n n n( ) = ( ) ( ) ( )∫v.p.

Γ
Γd  (12)

 N w x C C G x y n x n yij impq kljn kp lq m n
( ) ( ) ( )

,
( )( ) ,n n n n( ) = − ( ) ( )∫p.f.

Γ
(( )w y(y)dΓ , (13)

where C(ν) is the elasticity tensor in Ω(ν), ‘v.p.’ and ‘p.f.’ denote Cauchy’s principal value 
and the finite part of divergent integrals, respectively, and Gij

( )ν  is the fundamental solution 
of two-dimensional elastodynamics which is expressed by the Kronecker delta δij and the 
Hankel function of first kind and order zero H0

1( ) as

 

G x y H k x y

k

ij T ij
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( )
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( )

,n
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m
d( ) = −( )
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i
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1

0
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H k x y H k x y
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T L∂

−( ) − −( )( )
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1

0
1( ) ( ) ( ) ( ) .n n   (14)

α µ= − ( )i/ ( ) ( )1 1kTα µ= − ( )i/ ( ) ( )1 1kT

α µ= − ( )i/ ( ) ( )1 1kT α µ= − ( )i/ ( ) ( )1 1kT
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3.2 Classification of the eigenfrequencies of the Burton-Miller-type BIEs

Eigenfrequencies of the Burton-Miller-type BIEs (8) and (9) can be classified into the 
following three types:

•  eigenfrequencies of the boundary value problem (1)–(5) (true eigenfrequencies)

 • eigenfrequencies of the interior impedance problem (exterior fictitious eigenfrequencies):

 C u x u x xijkl k lj i
( )

,
( ) ( )( ) ( ) ,1 1 2 20+ = ∈r w Ω   (15)

 u x C u x n x xi ijkl k l j( ) ( ) ( ) .( )
,+ = ∈1 0 Γ   (16)

 • eigenfrequencies of the exterior Dirichlet problem (interior fictitious eigenfrequencies):

 C u x u x xijkl k lj i
( )

,
( )( ) ( ) ,2 2 2 10+ = ∈ ( )r w Ω   (17)

 u x xi ( ) ,= ∈0 Γ   (18)

 Radiation condition for u x xi ( ) .as → ∞  (19)

3.3 The block Sakurai-Sugiura method (SSM)

The block SSM is a contour integral method which solves a nonlinear eigenvalue problem 
which finds λ ∈ ℂ such that there exists a non-trivial solution f ∈k  of

 A( ) ,l f = 0   (20)

where A k k∈ ×
  is an analytic matrix function.

In order to examine eigenfrequencies of the BIEs (8) and (9) numerically, one can set A to 
be a coefficient matrix which is obtained by discretising the BIEs and perform the block 
SSM. In this study, however, we limit the shape of the inclusion Ω(2) to a cylinder of radius 
a centred at the origin and set A to be

 ∆ true
n

n n n n

n n n

U U U U

V V V
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( ) ( ) ( ) ( )

( ) ( ) ( )
w =

− −
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1 2 1 2

1 2 1

a a a a

a a a

 

 −−
− −
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α µ= − ( )i/ ( ) ( )1 1kT

α µ= − ( )i/ ( ) ( )1 1kT

α µ= − ( )i/ ( ) ( )1 1kT

α µ= − ( )i/ ( ) ( )1 1kT

α µ= − ( )i/ ( ) ( )1 1kT



 K. Matsushima, et al., Int. J. Comp. Meth. and Exp. Meas., Vol. 6, No. 6 (2018) 1131

respectively (see Appendix). This enables us to reduce computational cost and separate the three 
types of the eigenfrequencies. For general configurations, Misawa et al. [6] have proposed a method 
to distinguish the fictitious eigenfrequencies from the true eigenfrequencies by modifying BIEs.

The nonlinear eigenproblems are solved by the following procedure:

1. Let γ be a closed Jordan curve in the complex plane. Determine a representative point  
z0 of γ (e.g. centre of a circle) and compute A(z0) = [a0 a1 · · · ak ].

2. Construct the Hankel matrices

 Hm

m

m

m m m

′

′−

′

′− ′ ′−

=



















m m m
m m m

m m m

0 1 1

1 2

1 2 2

�
�

� � � �
�

,  (24)

 Hm

m

m

m m m

′
<

′

′+

′ ′+ ′−

=



















m m m
m m m

m m m

1 2

2 3 1

1 2 1

�
�

� � � �
�

,  (25)

 where m′ is a sufficiently large integer such that the number of eigenvalues in γ does not 
exceed m′, and the moments μi (i = 0, · · · , 2m′ − 1) are defined as

 m
p g

i
iz f z= ∫

1

2 i
(z) ,d  (26)

 f AH(z) U (z)V,=
−


1  (27)

 with the scaled matrix A(z) A(z)=  diag(1/||a0||,1/||a1||,…,1/||ak||) and random matrices 
U V k l, ∈

×

 . If µ0 is a zero matrix, then we judge that there exists no eigenvalue in γ and 
terminate the procedure.

3. Compute eigenvalues of , H Hm m
<

− λ  where m is the number of non-zero singular values 
of Hm′. The obtained eigenvalues are identical to the eigenvalues of the nonlinear eigen-
value problem A(λ)f = 0 in γ.

4 NUMERICAL EXAMPLES
In this section, we investigate the effect of the eigenfrequencies on the accuracy of the BEM. 
The collocation method with constant elements is used for discretisation of the BIEs, and 
GMRES with tolerance 10−5 is utilised to solve linear algebraic equations. The boundary Γ is 
discretised into 500 boundary elements, and its radius is set as a = 1 [m]. The incident wave uin 

is set to be a plane S-wave propagating in x2 direction. We first assume the host matrix Ω(1) to be 
steel (mass density ρ = 7.80 × 103 [kg], Young’s modulus E = 205 [GPa], Poisson’s ratio  
ν = 0.30) and the inclusion Ω(2) to be epoxy resin (ρ = 1.85 × 103 [kg], E = 3.00 [GPa], ν = 0.34).

Figure 2 shows the relative l2 errors of the numerical solutions (u, t) on Γ against the ana-
lytical solutions, the numbers of iterations for convergence in the GMRES and the distribution 
of eigenfrequencies which is obtained by the block SSM. We confirm that the exterior ficti-
tious eigenfrequencies (eigenfrequencies of the interior Dirichlet problem) are distributed 
only on the real axis but the true and interior fictitious eigenfrequencies are in the lower half-
plane. The figure also points out that the accuracy of the BEM and the convergence property 
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Figure 2:  Relation between the accuracy of the BEM, iteration numbers of the GMRES and 
distribution of the eigenfrequencies of the BIEs (8), (9) in the case that the host 
matrix Ω(1) is the steel and the inclusion Ω(2) is the epoxy resin.
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Figure 3:  Relation between the accuracy of the BEM, iteration numbers of the GMRES and 
distribution of the eigenfrequencies of the BIEs (8), (9) in the case that the host 
matrix Ω(1) is the epoxy resin and the inclusion Ω(2) is the steel.
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Figure 4:  Loci of the exterior fictitious eigenfrequencies with variation of 

∈ ( ) ∈{ }( )i / mkT
1



.^

become worse when its frequency is a complex number near the real axis of the complex 
plane. It is remarkable that not only fictitious eigenfrequencies but also the true eigenfrequen-
cies near the real axis affect the accuracy and convergence property. Note that the effects of 
the true eigenvalues are inevitable though the fictitious eigenfrequencies can be moved within 
the complex plane and their effects can be avoided, which will be confirmed below.

Next, we exchange the material parameters of the host matrix and inclusion (the host 
matrix is the epoxy resin and the inclusion is the steel in this case) and perform the same 
numerical example. The result is shown in Fig. 3. Different from the previous example, we 
see that the true eigenfrequencies are not distributed near the real axis and their effects are not 
observed. In fact, the wavelengths of both the longitudinal and transverse wave in the inclu-
sion Ω(2) are shorter than in the host matrix Ω(1) in the previous case, and this would indicate 

α µ= − ( )i/ ( ) ( )1 1kT´ ´α µ= − ( )i/ ( ) ( )1 1kTα µ= − ( )i/ ( ) ( )1 1kT
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that there exist some eigenmodes with small damping, which is represented as the negative 
number of the imaginary part of an eigenfrequency (note that the time dependence e−iωt is 
employed).

Finally, we investigate how the exterior fictitious eigenfrequencies are moved within the 
complex plane when the coupling parameter α is changed. Considering that some researchers 
have reported that α = ±i/k are appropriate choices for Helmholtz’ equations, e.g., [8–10], 
where k is the wavenumber, we examine α in the form of

 α µ= − ( )i/ ( ) ( )1 1kT– =
i

m( ) ( )
,

1 1kT

 (28)

where  ′ ∈ ∈–  and kT
( )1  are parameters which are independent of ω. Practically kT

( )1
 is 

determined by the target frequency that is actually used in the boundary element analysis. 
Figure 4 shows loci of some exterior fictitious eigenfrequencies with variation of α′ ∈ (−∞, ∞). 
We employ the wavenumber of the transverse wave kT

( )1 ∈ at the intersection of the locus 
and real axis as kT

( )1  for each locus. We see that the loci are symmetric with respect to the real 
axis for α′ ∈ (−∞, 0] and [0, ∞), which implies that the distances between the exterior fictitious 
eigenfrequencies and the real axis are independent of the sign of α′ though it significantly 
affects the convergence property. Also, the loci indicate that   α = ± ( )i/ m( ) ( )1 1kT  are appropriate 
choices in the sense of distance from the real axis, and support the results in Figs 2 and 3 that 
those α can avoid the influence of the exterior fictitious eigenfrequencies. From these results, 
we conclude that α µ= − ( )i/ ( ) ( )1 1kT  is an appropriate choice of the coupling parameter in the 
Burton-Miller formulation considering the accuracy and convergence properties.

5 CONCLUSION
In this study, we have investigated a distribution of eigenfrequencies of the Burton-Miller- 
type BIEs in two-dimensional elastodynamics. The Sakurai-Sugiura method (SSM) has been 
employed for the investigation. The numerical examples show that the Burton-Miller formu-
lation can avoid the fictitious eigenfrequency problem in terms of the distribution and 
α µ= − ( )i/ ( ) ( )1 1kT  is an appropriate choice of its coupling parameter.
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APPENDIX: SERIES REPRESENTATION OF WAVE PROPAGATIONS IN TWO-
DIMENSIONAL ELASTODYNAMICS

A solution of the equation (1) which satisfies the radiation condition can be written in polar 
coordinates x1 = r cos θ, x2 = r sin θ as follows [11]:

 u x
r

a U r b U r xr n
n

n
n n

n

( ) ( ) ( ) ,( ) ( ) ( ) ( ) ( )
= +( ) ∈

=−∞

∞

∑
1 1

1
1 1

2
1 1ei θ

Ω   (29)

 u x
r

a V r b V r xn
n

n
n n

n
θ
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= +( ) ∈
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1 1
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1 1
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where a bn n
(v) (v), ∈ are constants and U Vi

n
i
n( ) ( ),ν ν  and Tij

n ( ) ( , )ν

ν = 1 2  are defined as

 U r nH k r k rH k rn
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1
1

1( ) ( ) ( ) ( ) ( )( ) ,ν ν ν ν

= − ( ) + ( )
−

( )  (34)
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Similarly, we can obtain a solution of the equation (2) as follows:
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where  U Vi
n

i
n( ) ( ),ν ν  and Tij

n ( )ν  are respectively functions which are obtained by replacing the 
Hankel functions Hn

( )1  in U Vi
n

i
n( ) ( ),ν ν  and Tij

n ( )ν  with the Bessel function Jn.
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