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ABSTRACT
In this paper, we derive a boundary-domain integral formulation for the vorticity transport equation 
under the assumption that the viscosity of the fluid, through which the vorticity is transported by dif-
fusion and convection, is spatially changing. The vorticity transport equation is a second order partial 
differential equation of a diffusion-convection type.

The final boundary-domain integral representation of the vorticity transport equation is discretized 
using a domain decomposition approach, where a system of linear equations is set-up for each sub-domain, 
while subdomains are joint by compatibility conditions. The validity of the method is checked using sev-
eral analytical examples. Convergence properties are studied yielding that the proposed discretization  
technique is second order accurate for constant and variable viscosity cases.
Keywords: boundary-domain element method, variable material properties, vorticity transport equation

1  INTRODUCTION
Convection-diffusion type partial differential equations govern the physical mechanisms of 
transport phenomena - transport of momentum, energy and mass. In many engineering or 
natural circumstances, the flow velocity or the diffusion coefficient vary with time and loca-
tion. Variation may be due to the unsteady nature of the underlying phenomena or due to 
temperature or pressure dependence of diffusion coefficient. In terms of the boundary ele-
ment method, this type of problems can in the case of the constant velocity field and constant 
diffusivity be described by pure boundary integral equations by using the diffusion- 
convection fundamental solution.

Several researchers have considered variable velocity fields. Driessen and Dohner [7] pro-
posed finite element - boundary element method for advection-diffusion problems with 
variable advective fields and in finite domains. DeSilva et al. [6] considered 2D energy trans-
port. Wrobel and DeFigueiredo [18] and Rap et al. [11] developed a dual reciprocity boundary 
element formulation for convection-diffusion problems with variable velocity fields.

Variable diffusivity was considered by Grzhibovskis et al. [8], Chkadua et al. [5], Al Jawary 
[1–3] and Ang et al. [4]. Ravnik and Skerget [12] proposed a boundary-domain integral for-
mulation for diffusion-convection equations with variable coefficient and velocity and 
considered the energy equation with variable material properties, [13]. Boundary-domain 
integral method for compressible fluid flow was proposed by Škerget and co-workers [15, 16].

In this paper we, consider a spatially variable fluid viscosity and develop the bounda-
ry-domain integral method for the solution of vorticity transport equation in 3D. The 
vorticity transport equation governs the advective and diffusive movement of vorticity in 
fluid flows. It is an inhomogeneous equation due to the presence of the vortex twisting and 
stretching term, which accounts for inherent the 3D nature of fluid flows. The dual reciproc-
ity method [10], which is traditionally used to handle the domain contribution steaming 
from non-homogeneous parts of the governing equation, is in this work replaced by a 
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domain decomposition approach, which results in sparse integral matrices and thus makes 
DBIM computationally affordable.

2  GOVERNING EQUATIONS
We consider a domain Ω with a boundary Γ filled with an incompressible fluid. The flow of 
the fluid is assumed to be steady. Let 



r ∈Ω denote the position in the domain. If the fluid 
velocity field is denoted by 

 


υ υ= ( , )r t  then the mass conservation law for incompressible 
fluids states that the divergence of the velocityfield vanishes, i.e.

	




∇⋅ =υ 0	 (1)

The steady fluid momentum transport equation for this case is

	 ( ) ,






  

υ υ

ρ

ρ τ⋅∇ = − ∇ +∇ ⋅ +
1

0

Sm 	 (2)

where p is the pressure, τ  is the stress tensor and 


Sm  accounts for any additional body forces, 
which may act as a sink or source of momentum.

Taking into account the Newton’s law of viscosity, which is a linear relationship between 
stress and rate of strain, and considering incompressibility, the stress tensor may be written 
as τ µ= 2 ∈; where ∈ is the rate of strain tensor and μ is the kinematic viscosity of the fluid. 

The rate of strain tensor is defines as ∈ij
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. Calculating the divergence of the 

stress tensor gives the following expression. 
� �

� �
�

∇⋅ = ∇ ⋅ + ⋅∇τ µ µ( )2 2∈ ∈  Due to incompress-

ibility 




∇⋅ =υ 0, we can simplify it by showing that µ µ

�
� �

∇⋅ = ∇( )2 2
∈ v. Thus, the final 

expression for the momentum transport equation is 

	 ( ) ,
� � � � � �

� �
υ υ

ρ

ρ µ υ µ⋅∇ = − ∇ + ∇ + ⋅∇ +
1

2
0

2
∈ Sm 	 (3)

where the fluid viscosity  may vary with time and location.
To derive the velocity-vorticity formulation, we introduce vorticity, which is defined at the 

curl of the velocity field, 






ω = ∇× v. Vorticity is by definition solenoidal 




∇⋅ =ω 0. The kine-
matics equation is a vector elliptic partial differential equation od Poisson type, which links 
the velocity and vorticity fields for every point in space and time. For an incompressible fluid, 
it can be stated as (Ravnik [14]):

	 ∇ +∇× =
2 0






υ ω .	 (4)

The vorticity transport equation is derived by taking a curl of the momentum equations. 

First, the following relationships are used ( ) ,








  





υ υ υ υ ω υ ω⋅∇ = ∇ − × ∇ = −∇×
1

2
2 2 , to rewrite 

the momentum equation into

	
1

2

1
22

0

� � � � � � �
� �

∇ − × = − ∇ − ∇× + ⋅∇ +υ υ ω

ρ

ρ µ ω µ∈ Sm ,	 (5)

Introducing the curl considering that the curl of a gradient is zero, we obtain

	
� � � � � � �

�
� �

∇ × × = ∇ × ∇ × − ∇ × ∇ +( ) ( ) ( ),u w m w m2 Œ Sm 	 (6)
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Next, we can use

	


  



 





∇× × = ⋅∇ − ⋅∇( ) ( ) ( )υ ω ω υ υ ω	 (7)

	
 



 









∇× ∇× = ∇× ∇× − ∇ ⋅ ×∇( ) ( ) ( ) ,µ ω µ ω µw 	 (8)

	
 

 

∇× ∇× = −∇( ) ,ω ω
2 	 (9)

to write the final form of the vorticity transport equation for an incompressible fluid with 
variable viscosity:

	 ( ) ( ) ( ) ( ).
� � � � � � � � � � � � �

�
�

υ ω υ µ ω ω µ µ⋅∇ = ⋅∇ + ∇ +∇× + ∇× ×∇ +∇× ∈⋅∇w Sm
2 2 	 (10)

The last two terms in equation (10) are due to variable viscosity. They vanish in the case 
of constant viscosity and the equation simplifies to a standard expression known for an 
incompressible fluid with constant material properties.

3  BOUNDARY-DOMAIN INTEGRAL FORMULATION
Vorticity transport equation (10) can be viewed as a Poisson type equation of the follow-
ing format: ∇ =

2 


ω b , where 


b represents all other terms. The boundary-domain integral 
formulation of a Poisson type equation is (Wrobel [17]):
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	 (11)

where 


ξ  is a point in the domain and u u r r* * , / | |= ( ) = −( )








ξ π ξ1 4  is the fundamental 
solution for the diffusion operator. The last domain integral on the right hand side features a 
curl of body forces. This term may be reformulated using the following expression

	
�

�
� � �

�
� �

�
� � �

∇× ⋅∇ +( )( ) = ∇× ⋅∇ +( )( ) − ⋅∇ +( )×∇2 2 2∈ ∈ ∈µ µ µS u S u Sm m m* * uu*	 (12)

And the Gauss theorem

	
�

�
� �

�
� � �

∇× ⋅∇ +( )( ) = − ⋅∇ +( ) ×∫ ∫
Ω Γ

Ω Γ2 2∈ ∈µ µS u d S u ndm m* * 	 (13)

so that the calculation of the curl in the last term of equation (11) is avoided:
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The first domain integral on the right-hand side of equation (14) includes derivatives of the 
velocity and vorticity field functions. In order to avoid calculation of derivatives, we use 
algebraic relations to move the derivative from the unknown field function to the fundamental 
solution. Let us first write the first domain integral alone for jth component of vorticity only:

	








υ ω ω υ⋅∇( ) − ⋅∇( )( )∫ j j u d* Ω
Ω

	 (15)

Due to the solenoidality of the velocity and vorticity  fields, we may use 


 



w j j⋅∇( ) = ∇ ⋅( )υ ωυ  
and 



 



υ ω υω⋅∇( ) = ∇ ⋅( )j j  to transform equation (15) into 

	


 

∇⋅ −( )( )∫ υω ωυj j u d* Ω
Ω

	 (16)

In order to move the derivative towards the fundamental solution, the following algebraic 

relation 


 



   



∇⋅ −( )( ) = ∇⋅ −( ) + −( )⋅∇u u uj j j j j j* * *uw wu uw wu uw wu  is used to obtain two 
integrals

	


   



∇⋅ −( )( ) − −( ) ⋅∇∫ ∫
Ω Ω

Ω Ωu d u dj j j j* *υω ωυ υω ωυ 	 (17)

The first integral may be converted to a boundary integral using a Gauss divergence theorem. 
Thus, the final form of the first domain integral on the right-hand side of equation (14) for jth 
vorticity component without derivatives of field functions may be stated as:

	


   



n u d u dj j j j⋅ −( )( ) − −( ) ⋅∇∫∫ * *υω ωυ υω ωυΓ Ω
ΩΓ

	 (18)

The final integral expression for j-th component of vorticity is

	

m x w x mw m

uw wu
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Γ
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2 m

	 (19)

4  DISCRETIZATION
The governing equation (19) features, due to the inhomogeneous and non-linear nature of the 
underlying flow problem, boundary and domain integrals. Thus, we are required to discretize 
the boundary and the domain into boundary elements and domain cells. We choose quadrilat-
eral boundary elements (Fig. 1) and hexahedral domain cells (Fig. 2) with quadratic 
interpolation for function (u) and linear interpolation for flux (q). Interpolation of function 
and flux on each boundary element is done using a local coordinate system ξ η,( ). Node 
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distribution is shown on Fig. 1 and the Lagrange ϕi and φi shape functions are used to achieve 
interpolation:

	 u u q qi i i i
ii

( , ) ( , ) ( , ) ( , )ξ η ϕ ξ η ξ η φ ξ η= =

==

∑∑
1

4

1

9

	 (20)

Interpolation of function within domain cells is also quadratic using 27 nodes and the 
Lagrange Φi  shape functions are used to achieve interpolation:

	 u ui i
i

( , , ) ( , , )ξ η ζ ξ η ζ=

=

∑Φ

1

27

	 (21)

The geometry of the boundary element is defined by 8 corner nodes, thus each surface is 
defined by 4 nodes (numbers 1,3,5,7 in Fig. 1). One may find the location of flux nodes 
(a,b,c,d) by the following transformation

Figure 1: Linear interpolation for flux (squares) and quadratic interpolation for function 
(circles) over a surface. Left R3 space, right local coordinate system.

Figure 2: A computational domain consisting of one domain cell and six boundary elements. 
Distribution of nodes is shown: left flux, right function.
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Based on this transformation shape functions for flux interpolation are

	

f x h f x h

f x

1 2
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44h f x h,

	 (23)

Based on the proposed discretization scheme, in order to write the discrete version of 
equation (19) the following type of integrals have to be calculated

	 [ ] * , [ ] * ,H u nd G u di i= ∇ ⋅ =∫ ∫ϕ φ





Γ Γ

Γ Γ 	 (24)

	 [ ] * , [ ] * , [ ] *







A nu d D u d B u di i i= ⋅ = ∇ =∫ ∫ ∫j
Γ Ω Ω

Γ Φ Ω Φ Ω	 (25)

These integrals depend on the domain geometry, computational mesh and the choice of the 
source point location. Due to the non-local nature of the fundamental solution, all integrals 
are non-zero.

Calculation of the free coefficient c


ξ( ) When a rigid body movement is applied, u = 1, 

q = 0, we see that the sum of all H matrix elements for one source point must be equal to 0, 

thus we may use this fact to calculate c


ξ( ). If the source point is located on the surface, we 

know that c = 1/2, also if the source point is inside of the element then c = 1. Those two are 
used to check the accuracy of calculated integrals.

4.1  Setting up the system of equations

We use a collocation scheme to set up linear equations at unknown nodes in the computa-
tional mesh. Since domain integrals are present in the governing integral equation this leads 
to full matrices of integrals and unreasonably high computational demands. To avoid this, we 
employ a domain-decomposition strategy to set up a sparse system of linear equations.

The strategy is as follows. We consider each domain element an individual subdomain. 
Such a subdomain includes 26 function nodes on the surface (8 in the corners, 6 at the middle 
of the surfaces and 12 at the middle of edges) and 24 flux nodes (4 on each side). In order to 
set up a system of equations, the source point is set in all of those nodes (24+26=50). Addi-
tionally, the source point is set into a node in the centre of the domain element, where the 
function value may be obtained explicitly from known boundary values. Thus all in all, we 
have 51 equations for each element.

Since neighbouring elements share nodes and since boundary conditions on the outer 
boundaries of the domain are prescribed, we obtain an over-determined system of equations. 
An example of setting up the system of linear equations in this manner is shown in Fig. 3.

The system of linear equations obtain in this way is solved in a least squares manner using 
the Paige and Saunders [9] solver.
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The computational demands of the proposed scheme scale linearly with the number of 
nodes. In the worst case (corner node) each node is connected to eight subdomains and thus 
renders approximately 51·8 non-zero elements in the system matrix. If n is the number of all 
nodes, then the number of non-zero matrix elements is 51·8n. For large n this number of non-
zero elements is significantly smaller that the n2 storage requirements of the standard 
approach, which does not utilise domain decomposition.

5  VALIDATION
In order to validate the integral formulation of the vorticity transport equation, we solved a 
flow problem featuring a fluid with variable viscosity and momentum sources. We consider 
pressure drop driven developed flow between to large parallel horizontal plates. The vertical 
walls are assumed to be very far, so the flow is two-dimensional. The computational domain 
is shaped as a box with the flow in the x direction. At the inlet, a uniform flow field is pre-
scribed ( ( , , ))



υ = 1 0 0 , while at the outlet a developed flow profile is prescribed 
( , )d dx x y zυ υ υ/  = = =0 0 . The fluid slips freely at the vertical side walls and does not slip at 
the top and bottom walls. We consider three cases: a constant viscosity case, a case where 
viscosity is a linear function of position and a case where viscosity changes quadratically. In 
order for the flow to have a parabolic profile in all cases, we assume that the fluid is under the 
influence of momentum sources. Table 1 lists all cases.

Table 1: List of cases for testing the vorticity transport equation. The analytical solution of 

Navier-Stokes equation for all cases is 
 

υ ω− = −( )( ) = −( )( )6 0 0 0 6 1 2 02z z z, , , , ,

case
Viscosity 
μ

momentum sources 


Sm  

A 1 (0,0,0)
B 1+z (–6(4z–1),0,0)
C 1+z2 (12(1–3z)z,0,0)

Figure 3: An example of building the system of linear equations in the proposed domain-
decomposition scheme. A 2D cross-section of a domain is shown. Dirichlet boundary 
conditions are assumed. Each equation is shown with a short line originating from 
the source point location and pointing into a subdomain for each it is written.
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In order to asses the influence of the variable viscosity on the flow field results, we measure 
the difference between the solution obtained in the constant viscosity case A and the cases 
with linear and quadratic dependence of viscosity. Relative RMS norm is used, defined as

	 || ||
( )

,
( ), ,

,

, ,

,

u
u u

u
w

w w

wx

x A x Bi

x Ai

y

y A y Bi

y Ai

=
−

=
−∑

∑
∑

∑
2

2

2

2
 || || 	 (26)

where i includes all nodes along the vertical outlet pro le. We consider several meshes with 
equidistantly placed nodes. The meshes have 5, 9, 17, 33 and 65 nodes in each direction. For 
a domain of size 1, the element sizes are between h= 0.2 and 0.0154.

Figure 4 displays the norms and thus compares the simulated velocity and vorticity fields 
for cases with and without variable viscosity. For the coarsest mesh, the difference is large, 
while for all others the differences are lower and at approximately the same level. Thus, we 
can conclude, that the proposed integral formulation and the numerical method are able to 

Figure 4: Velocity (top panel) and vorticity (bottom panel) norms expressing the difference 
between simulation of constant viscosity problem and variable viscosity problem.
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capture the physical effect of variable viscosity field in fluid flows. The norms for vorticity 
are higher than the norms for velocity. This is due to the fact, that vorticity is, by definition, 
a derivative of velocity, thus lower accuracy is expected.

6  CONCLUSIONS
We developed a boundary-domain integral formulation of the vorticity transport equation 
with variable viscosity. The contribution of the variable viscosity is present in additional 
integral terms which feature the viscosity gradient. These terms vanish when the viscosity is 
constant and the formulation simplifies to the constant viscosity case. Decomposition of the 
viscosity into a constant and variable part, as was proposed by other authors, was not used.

In order to efficiently employ the boundary-domain integral method on large computa-
tional grids, we propose the use of domain decomposition, which leads to over-determined 
systems of linear equations.

The formulation proposed in this work will be used in the future as a part of a Navier-
Stokes fluid flow and heat transfer solver.
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