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ABSTRACT
The linear coupled stretching-bending problem for general laminates is here formulated with the mid-
plane stress function and the lateral deflection as independent field variables. A mathematical similarity 
between the two problems is achieved by introducing a re-arranged mid-plane strain tensor as one of 
the dependent variables. As a step towards a genuine boundary element solution for this problem, its 
fundamental solutions are derived using a Fourier transform approach. First, the transforms of the 
solutions are obtained in terms of the transform space variables and their inverses are deduced using 
complex integral calculus. Through the use of these fundamental solutions, boundary integral equations 
of the linear coupled stretching-bending problem are formulated without the presence of any irreduc-
ible domain integrals. Issues regarding the numerical implementation of this formulation are raised and 
discussed.
Keywords: boundary integral equations, coupled stretching-bending, fundamental solutions, general 
laminates, stress function formalism

1 INTRODUCTION
Composites have become attractive alternatives to traditional engineering materials because 
of their high specific stiffness and strength. They can be engineered to meet specific structural 
requirements through the choice of reinforcement and matrix materials, the volume fractions 
of fibre and matrix and the fabrication method. Laminated plates, in particular, are designed 
to have desired properties through the choice of layer orientation, number of layers in a given 
direction, thickness of individual layers, type of layer and the layer stacking sequence.

Laminated plates are modelled and analysed as elastic anisotropic solids. The anisotropy 
of a laminate depends on the anisotropy of its individual layers and the layer stacking 
sequence. The most complex form of such anisotropy, exhibited by general, non-symmetri-
cally laminated plates, causes coupled stretching-bending response to applied in-plane and 
lateral forces.

Exact analyses of general laminates have been performed in cases of special material sym-
metry that eliminates a number of elastic constants without removing the coupling effect. 
Static solutions under simple loadings [1] were extended to free flexural vibration and buck-
ling problems [2, 3] under a variety of boundary conditions [4]. A post-buckling analysis 
under simple in-plane loading was also performed [5]. Numerical post-buckling solutions, 
based on finite element or finite difference methods and accounting for the stretching- bending 
coupling can also be found in the technical literature [6].

Through the boundary element method (BEM), complex plate geometries as well as load-
ing and boundary conditions can be accommodated with the dimensionality of the problem 
being reduced by one. Numerical analysis schemes for general laminates, based on boundary 
element methodology, have been proposed although not fully implemented. Previous such 
analyses relied on the fundamental solutions of the two uncoupled, extensional and flexural 
problems [7]. The coupling of the two problems resulted in irreducible domain integrals and 
the proposed solution relied on the adoption of an iterative scheme.
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For a genuine BEM formulation, the fundamental solutions for the general laminate prob-
lem are essential. Explicit forms of such solutions have been derived [8] through an elaborate 
approach leading to expressions of considerable complexity. The mathematical basis of a 
BEM scheme relying on these solutions has also been developed [9].

The in-plane extensional problem can be formulated in two ways, that is, either in terms of the 
stress function [1, 3, 5, 7] or the in-plane displacements [2, 4] as field variables. Although the 
latter approach is more versatile in accounting for in-plane boundary conditions, the former is 
more mathematically elegant and possibly more suited to the case of stability problems when the 
applied contour traction is usually known. Fundamental solutions for the general laminate prob-
lem with the displacement formalism have been obtained using Fourier transforms [10]. In this 
paper, the same approach is applied to the problem formulated in terms of the stress function and 
the lateral deflection as field variables. The mathematical similarity between the extensional and 
flexural problems facilitates the derivation of fundamental solutions in very similar compact 
forms. Starting from a reciprocity relation, integral equations are derived by repeated applica-
tions of the Green’s theorem. Introducing the derived fundamental solutions into these integral 
equations leads to a boundary element formulation without any irreducible domain integrals.

2 LINEAR LAMINATE THEORY
According to the classical lamination theory, the plate is assumed to be perfectly laminated 
consisting of an arbitrary number of discrete layers, each individual layer being homoge-
neous through its thickness and in a state of plane stress. The laminate is also assumed to 
deform according to Kirchhoff’s assumptions for the bending of thin plates. According to this 
theory, the membrane forces Nab and bending moments Mab are related to the curvatures κab 
and mid-plane strains εab by

 Nab = Aabgd egd + Babgdkgd (1)

 Mab = Babgd egd + Dabgdkgd (2)

where Aabgd and Dabgd are, respectively, the extensional and flexural rigidities, Babgd are 
extensional-flexural coupling coefficients and repeated Greek indices mean summation over 
their range, which is from 1 to 2. It is evident from their derivation that all three material 
tensors are symmetric with respect to their pair of indices ab and gd. Strains and curvatures 
are, respectively, related to the mid-plane displacements ua and deflection w by

 eab = 
1

2
(ua ,b + ub ,a) (3)

 κab = –w,ab (4)

where a comma followed by a lower index indicates differentiation with respect to the 
 corresponding co-ordinate. Finally, forces and moments should satisfy the equations of 
equilibrium

 Nab ,b + fa = 0 (5)

 Mab ,ab + q = 0 (6)

where fa is the body force assumed to be derivable from a potential function F according to

 fa = – F,a (7)

and q is the lateral pressure.
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The field equations are complemented by the boundary conditions. Along the smooth por-
tions of a boundary contour G with normal and tangent unit vectors n and s, respectively, the 
field variables should satisfy the conditions

 pa = nb Nab (8)

 Vn = na Mab ,b + 
∂

∂

M

s
ns  (9)

 Mn = nanb Mab (10)

where pa , Vn and Mn are, respectively, the in-plane traction, shear force and bending moment, 
while, at any corner point j, the discontinuity jump of the twisting moment Mns, given by

 Mns = sa nb Mab , (11)

should be equal to a concentrated force Cj.
If forces and moments are pre-scribed along the whole or part of G, pa , Vn, Mn and Cj have 

known values there; alternatively, mid-plane displacements, deflection and deflection gradi-
ent qn may be pre-scribed along the whole or part of G, in which case pa , Vn, Mn and Cj 
become the boundary unknowns of the problem.

3 STRESS FUNCTION FORMALISM
The problem can be re-formulated in terms of a stress function F such that

 N L F
αβ αβ
= + Fdab (12)

where dab is the Kronecker delta and the operator Lab defined by

 Lab = 
∂

∂ ∂

2

x x
κ κ

dab – 
∂

∂ ∂

2

x x
α β

 (13)

In-plane equilibrium, that is, eqn (5) with the body force given by eqn (7), is identically sat-
isfied by the distributed internal forces given by the expressions of eqn (12). The stress 
function also needs to satisfy the compatibility condition imposed on the mid-plane strains, 
namely

 Lab eab = ε
αβ αβ

, = 0 (14)

where

 ε ε δ ε
αβ κκ αβ αβ
= −  (15)

is a re-arranged strain tensor introduced so that the compatibility condition, eqn (14), is math-
ematically similar to the second equilibrium eqn (6). Compatibility is imposed on the field 
variables by re-arranging the constitutive eqn (1). For this purpose, it is necessary to introduce 
the inverse of the extensional rigidity tensor Aabgd  through

 A
αβγδ

−1 Aγdlm = daldbm (16)

Next, Nab and kab are substituted from eqns (12) and (4), respectively, into constitutive 
eqn (1), which is solved for eab  and the result substituted into eqn (15) to give

 ε
αβ αβγδ γδ
=

ˆ ,A F +B̂abgd gd abkkw A, + F  (17)
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where

 Â A A A A
αβγδ κκλλ αβ γδ αβκκ γδ κκγδ αβ αβγδ

δ δ δ δ= − − +
− − − −1 1 1 1  (18)

 B̂
αβγδ

 = A B
αβλµ λµγδ

 (19)

and

 A
αβγδ

= A
κκγδ

−1 dab – A
αβγδ

−1  (20)

It should be noted that, among the tensors defined above, only that given by eqn (18) is 
symmetric with respect to the pair of indices ab and gd.

The second constitutive equation also needs to be expressed in terms of the same field 
variables. Thus the expression for eab obtained by substituting Nab and kab from eqns (12) 
and (4), respectively, into eqn (1) and kab from eqn (4) are substituted into eqn (2) to give

 Mab = B̂
γδαβ

F,gd –D̂
αβγδ

w,gd +BabkkF (21)

where

 D̂
αβγδ

= Dabgd – Bablm A
λµνξ

−1 Bnxgd  (22)

is the reduced flexural stiffness tensor and

 B
αβγδ

= Bablm A
λµγδ

−1 . (23)

It is evident from eqn (22) that the reduced flexural stiffness tensor is symmetric with respect 
to the pair of indices ab and gd while the tensor defined by eqn (23) is not. However, it is evi-
dent from the new constitutive eqns (17) and (21) that the full elasticity tensor comprising the 
4th-order tensors defined by eqns (18), (19), (22) and relating mid-plane strains and bending 
moments to the second derivatives of the field variables is symmetric.

The requirement that the mid-plane strains satisfy compatibility, eqn (14), and the bending 
moments satisfy equilibrium, eqn (6), leads to the 4th order differential equations

 ˆ ,A F
αβγδ αβγδ

+ ˆ ,B w
αβγδ αβγδ

= − Aabkk abF,  (24)

 B̂
γδαβ

F,abgd −D̂
αβγδ

 w,abgd = −q −B
αβκκ

F,ab (25)

The formulation is completed with the determination of the boundary conditions that replace 
eqn (8), that is, conditions satisfied by F along the boundary contour. Using eqns (12), it has 
been shown that, at any point Q x x( , )1 2 along the boundary,

 F x x p x x p
O

Q

= − − −∫ [( ) ( ) ]1 1 2 2 2 1 dG   (26)

 
∂
∂

= − − ∫∫
F

n
s Q p s Q p

O

Q

O

Q

1 1 2 2( ) ( )d dΓ G  (27)

where O is an arbitrarily located origin. According to eqn (26), F can be physically inter-
preted as the resultant moment about Q of the traction over OQ. Similarly, eqn (27) describes 
the normal derivative of F as the component of the resultant traction over OQ in the direction 
–s at Q. It is evident from eqns (26) and (27) that F and its normal derivative can be identified 
along G only if traction has been specified along the whole boundary. If kinematic mid-plane 
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conditions are imposed on parts of or the whole boundary, additional relations need to be 
adopted for a consistent formulation of the problem.

4 FUNDAMENTAL SOLUTIONS
A fundamental solution is defined as the response of an infinite domain to unit concentrated 
action, that is, force or moment. The force is applied at the source point P(ξa) while the 
response is determined at the field point Q(xa) as illustrated in Fig. 1. Solutions to eqns (24) 
and (25) are therefore sought for mid-plane body forces

 fa = dlad (x–ξ) (28)

that is, unit forces acting in directions parallel to the co-ordinate axes, a transverse unit point 
force

 q = d (x–ξ) (29)

and a unit moment about the direction normal to unit in-plane vector m given by,

 q = 
∂ −

∂

δ ( )

( )

x ξξ

ξξm
 = mad,a (x–ξ) (30)

These four solutions are represented by pairs of functions ( , )F w
λ λ

∗ ∗  satisfying eqns (24) 
and (25) with right-hand sides given by eqn (28) for l = 1,2, by eqn (29) for l = 3 and by 
eqn (30) for l = 4.

5 FOURIER TRANSFORMS
In a two-dimensional space, the Fourier transform of a function f(x) is given by [11]

 f̂  (ζ) = 
1

2π
f ( )x

W∞

∫  eiζ·x dΩ 

where z is the two-dimensional independent variable in the Fourier space. For the purposes 
of the present analysis, it is important to note that the Fourier transform of the derivative f,a 
is (−iza)f̂  (z) where i is the unit imaginary number. Thus, taking the Fourier transforms of 
both sides of eqns (24) and (25) with the right-hand sides given by eqns (28), (29) and (30) 
converts the partial differential into algebraic operators comprising polynomials in za. 

Figure 1: Infinite laminated plate under unit forces/moment at source point P(ξ).
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Thus, the Fourier transforms of the fundamental solutions for the field variables satisfy the 
equations

 Âabgd zazbzgzdF̂
λ

∗ + B̂abgd zazbzgzd ŵλ

∗ = b1

2
l

π
ζ ξei ⋅  (31)

 B̂gdab zazbzgzd F̂λ

∗ − Dabgd zazbzgzd ŵλ

∗ = 
b2

2
l

π
ζ ξei ⋅  (32)

where

 b1λ = −iÂlbkkzb , b2l = −iB̂lbkkzb , l = 1,2 

 b13 = 0, b23 = −1 

 b14 = 0, b24 = imkzk 

The system of equations (31) and (32) can now be easily solved for the Fourier transforms of 
the fundamental solutions. The results take the form

 F̂l
∗ =

⋅gl z z
z z
( , )

( , )
1 2

1 2 2D
eiζ ξ

π
 (33)

  (34)

where

 ∆(z1, z2) = (Âabgd D̂kmnξ + B̂kmnξ B̂gdab)zazbzgzdzkzmznzz, (35)

 gl(z1, z2) = −i(Âlbkk D̂amgd + B̂lbkk B̂amgd)zazbzgzdzm; l = 1, 2 (36)

 hl(z1, z2) = i(B̂lbkk Âamgd − Âlbkk B̂gdam)zazbzgzdzm; l = 1, 2 (37)

 g3(z1, z2) = B̂abgdzazbzgzd,  (38)

 h3(z1, z2) = −Âabgd zazbzgzd,  (39)

 g4(z1, z2) = −imk B̂abgdzazbzgzdzk = −imkzkg3(z1, z2) (40)

 h4(z1, z2) = imk Âabgd zazbzgzdzk = −imkzkh3(z1, z2) (41)

Thus ∆(z1, z2) is an 8th order homogeneous polynomial in either z1 or z2 whose coeffi-
cients are expressed in terms of the material constants. Similarly, the functions gl(z1, z2) 
and hl(z1, z2) are homogeneous polynomials of 5th order for l = 1,2,4 and of 4th order 
for l = 3.

6 INVERSE FOURIER TRANSFORMS
The similarity of the expressions for the Fourier transforms of the stress function and the 
deflection suggests that the derivation of only one inverse transform needs to be described in 
detail. In this derivation, only the distinction between 4th and 5th order polynomials in the 
numerator needs to be made.

ŵl
∗ =

⋅hl z z
z z
( , )

( , )
1 2

1 2 2D
eiζ ξ

π
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6.1 Stress function

The inverse of the Fourier transform given by eqn (33) is written:

 Fl
∗ − =

∞

∫( )x xx
1

2π W

F̂l
∗ ( )e d

1 ( , )

,
e d-i -iζ

π
ζ ζ⋅ ⋅ −=

∞

∫x xW
D

W
W

z
l

z
z z
z z4 2

1 2

1 2

g

( )
( )xx  (42)

The integration on the right-hand sides of eqn (42) is performed by separation of variables:

 F
gr r

l
z l zz

z z
z z

z∗

−∞

∞

−∞

∞

= ∫∫
1

4 2 1
1 2

1 2
2

1 1 2 2

π
e d

( )
e d-i -i,

( , )D
 (43)

where ra = xa – xa . Integration with respect to z2 is performed using complex variable calcu-
lus [12]. For this purpose, a complex variable z = z2 + iζ′ is introduced and a complex function 
H(z) defined by

 H z
g z

z
r z( )

,

( , )
= l z

z
( )

e-i1

1

2

D
 (44)

H(z) is integrated around the contour shown in Fig. 2 comprising the segment of the real axis 
from –R to R and the semicircle CR in the upper half of the complex plane.

Thus, for any real value of R,

 
g

H z z ar

R

R

C

k
k

R

l zz z
z z

z
( , )

e d d i Res-i1 2

1 2
2

2 2 2
D( , )

( ) ( )
−
∫ ∫ ∑+ = π  (45)

where ak represent the poles of H(z) within the contour. It has been shown [12] that the con-
tour integral on the left-hand side tends to zero as R goes to infinity provided that r2 < 0. As 
R increases, the semicircle expands and eventually encompasses all the poles of H(z). To 
determine the residues associated with these poles, it is noted that the 8th order polynomial 
D(z1, z) has four pairs of distinct complex conjugate roots [13] which can be easily expressed 
in terms of z1 by introducing the parameter r such that z = z2 = rz1; this transforms eqn (35) 
into

 D(z1, z) = ζ1
8D(1, r) 

The roots of D(1, r) are represented by

 r r r r r r rk k k k k k k k= ′ + ′′ = ′ − ′′ ′′ > =i i, , ; , , ,0 1 2 3 4 

Figure 2: Contour for complex function integration.
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where a bar above a symbol represents the complex conjugate of the corresponding parame-
ter. The denominator in eqn (44) can thus be written

 D D( , ) ( )( )z z z r z z r z1 2 8 2 1 2 1
1

4

= − −
=

∏ i i
i

where D8 is the coefficient of r8 which can be expressed explicitly in terms of material con-
stants according to eqn (35). Before proceeding with the application of eqn (45), it is, at this 
stage, necessary to make the distinction between z1 being positive or negative.

(a) z1 > 0
In this case, H(z) has four poles rkz1 of order 1, that is, simple poles, in the upper half-plane 

and the respective residues are

 Res(rkz1) = [( ) ( )]
( , )

z H z
g e

k z
k

r

k
ak

k

− ==

−

r z
r

b zr z
l

r z

1
8 1

1

2 11

2

i

iD

where exponent a in the denominator of the right-hand side is equal to either 2 or 3, depend-
ing on whether gl is a 5th order or 4th order polynomial, respectively, and

 β ρ ρ ρ ρ ρk k k i k i
i i k

= ′′ − −

= ≠

∏ ( )( )
,1

4

 

Thus, from eqn (45)

 
g gr k

r

k
a

k

k

l z l
r zz z

z z
z

r
b z

( )
e d

(1, )e-i
-i

1 2

1 2
2

8 1

2 2

2 1,

( , )D D−∞

∞

∫ =
π

==
∑

1

4

 

(b) z1 < 0
In this case, the complex conjugates of rk, multiplied by z1, are the four simple poles of 

H(z) in the upper half-plane; hence,

 Res
i

i

( ) [( ) ( )]
( , )

r z r z
r

b zr z
l

z r

k k z
k

r

k
a

z H z
g e

k

k

1 1

8 1
1

1 21

2
= − =

−=

−

D
 

and

 g gr k
r

k
a

k

l z l
z rz z

z z
z

r
b z

( )
e d

(1, )e-i
-i

1 2

1 2
2

8 1

2 2

1 2,

( , )D D−∞

∞

∫ = −
π

kk =
∑

1

4

 

It is thus possible to obtain the inverse transform given by eqn (43) over the whole range 
of z1:

 F
g k

k

v

a
k

k

l
l

zr
b z

z∗
∞

=

= ∫∑1

4

1

8 1
1

01

4 1

πD
( , ) e

d
-i

−
−∞=
∫∑1

4

1

8 1
1

0

1

4 1

πD
g k

k

v

a
k

k
l

zr
b z

z
( , ) e

d
-i

 (46)

where vk = r1 + rkr2 while a = 2 for l = 1,2,4 and a = 3 for l = 3. By substituting z1 = s in the 
first integral of the right hand side of eqn (46) and z1 = –s in the second, it is possible to show 
that the second term is simply minus the complex conjugate of the first. This leads to

 F
g

s
sk

k

sv

a
k

k

l
l r

b
∗

∞

=

=








∫∑1 1

8 01

4

2

e
d

-i

πD
Re

( , )  



 S. Syngellakis, Int. J. Comp. Meth. and Exp. Meas., Vol. 6, No. 6 (2018) 1027

Since r2 < 0, Re(–ivk) < 0; thus exp(–ivks) is bounded as s goes to infinity. Under this condi-
tion, integration by parts leads to

 
e

d
-isvk

s
s

2
0

∞

∫  = –ivk 
e

d
-isvk

s
s

0

∞

∫  (47)

and

 
e

d
e

d
-i -isv

k
svk k

s
s

v

s
s

3
0

2

02

∞ ∞

∫ ∫=  (48)

Then the Cauchy principal value of the divergent integral on the right-hand side of eqns (47) 
and (48) can be obtained by making use of a property of the Laplace transforms [12], which 
gives

 P
e

d
-isvk

s
s

0

∞

∫ = –ln vk  (49)

Thus, finally, the fundamental solutions for the in-plane stress function is provided in the 
form of the real functions

 F
g v vk k k

kk
l

l r
b

∗

=

=








∑1 1

8 1

4

2

i

πD
Re

( , ) ln
; l = 1,2,4 (50)

 F
g v vk k k

kk
3

8

3
2

1

41 1∗

=

= −








∑4πD

Re
( , ) lnr

b
 (51)

If r2 > 0, for the contour integral over CR to tend to zero as R goes to infinity, the semicircle 
should lie in the lower half-plane. The process described above is repeated leading to the 
same final result.

6.2 Deflection

The derivation of the fundamental solutions for the deflection follows exactly the same steps 
as that for the stress function. Thus, the final expressions are the same as those given by eqns 
(50) and (51) but with function hl replacing gl, namely,

 w
h v vk k k

kk
l

l r
b

∗

=

=








∑1 1

8 1

4

2

i

πD
Re

( , ) ln
; l = 1, 2, 4 (52)

 w
h v vk k k

kk
3

8

3
2

1

41 1∗

=

= −








∑4πD

Re
( , ) lnr

b
 (53)

7 BOUNDARY INTEGRAL EQUATIONS
BEM can now be applied to the analysis of a finite laminated plate, whose domain W is 
bounded by the contour G as shown in Fig. 3. Apart for the in-plane body forces and the 
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lateral pressure, the plate may also be subjected to various edge loads such as traction p. 
A BEM solution scheme can be developed by formulating first the reciprocity relation

 ( ) , )eab abkk ab ab abkk ab− ′ − ′∫ A F M B wF F W+( , )d
Ω

 

 = ′ − ′ ′ − ′∫ [( ) )eab abkk ab ab abkk abA F M B wF F W, +( , ]d
Ω

 (54)

where

 ( , , , ) ( , , , )ε ε
αβ αβ αβ αβ

F M w F M w and ′ ′ ′ ′  

are two equilibrium states due, respectively, to body force-lateral pressure combinations  
(f, q) and (f' q'). As such they satisfy compatibility, eqn (14), and equilibrium, eqn (6). This 
reciprocity relation is proven by taking into account the constitutive eqns (17) and (21) as 
well as the symmetries of material tensors.

Repeated integrations by parts and applications of Green’s theorem transform eqn (54) into

 ( , ,e eab ab ab ab′ − ′∫ F F)dW
Ω

 + ( , ,M w M wab ab ab ab′ − ′∫ )dW
Ω

 + A F Fabkk b a b a( , , , ,F F W′ − ′∫ )d
Ω

 + B w wabkk b a b a( , , , ,F F W′ − ′∫ )d
Ω

 = IF(F, F') + JF(F, F') + Iw(w, w') + Jw(w, w') + IF(F, F', w, w') (55)

It is noted that the first domain integral on the left-hand side of eqn (55) always vanishes 
on account of strains satisfying compatibility eqn (14). The right-hand side of eqn (55) com-
prises contour integrals and corner jump terms defined by the equations

 IF(F, F') = k e e kn ss ss nF
F

n

F

n
F′ −

∂ ′
∂

+ ′
∂
∂

− ′



∫ dG

G

 (56)

 I w ww ( , )′ = V w M
w

n
M

w

n
V wn n n n′ −

∂ ′
∂

+ ′
∂
∂

− ′



∫ dG

G

 (57)

 IF(F, F',w,w') = n A F B w A F B wb abkk a abkk a abkk a abkk aF F G
G

( , , ) ( , , )′ + ′ − ′ + ∫ d  (58)

Figure 3: Laminated plate of arbitrary shape under edge traction p.
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 JF(F, F') = ε εns ns j
j

K

F F′ − ′ 
=

∑
1

 (59)

 Jw(w, ′w ) = M w M wns ns j
j

K

′ − ′ 
=

∑
1

 (60)

where K is the number of corner points along G. In eqn (56),

 ess = εnn
su

s
=
∂

∂

 

is the normal strain in the direction of s, while

 kn = n
s

s n
n s

u

s
nn ns n

α αβ β α β αβ
ε ε

ε ε
, ( )+

∂

∂

=
∂

∂

+
∂

∂

= −
∂

∂

2
2

2
 

represents the change of curvature of the boundary G due to the normal in-plane displacement 
un. It is worth noting the ess and kn are multiplied, respectively, by a force acting in the 
s-direction and a moment about an axis perpendicular to the plane of the plate; it is thus evi-
dent that these products represent work terms.

It is next assumed that the loading system (f, q) is the one actually applied while (f' q') 
comprises the unit actions given by eqns (28), (29) and (30) causing the fundamental states 
derived in the previous section. Then, the non-vanishing domain integrals on the left-hand 
side of eqn (55) are reduced to the left-hand side expressions given below:
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The domain integrals in the above expressions depend on known quantities, they can there-
fore be evaluated. The variable of each free term is transferred to the boundary where unit 
vector m becomes identical to unit normal n; this generates a factor k, which equals ½ if P(ξ) 
lies on a smooth segment of G. The boundary variable F,a can be evaluated since

 F n
F

n
s

F

s
,
α α α
=

∂

∂

+
∂

∂
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and both F(s) and its normal derivative are given, respectively, by eqns (26) and (27). The 
boundary deflection and its normal derivative can be known or unknowns depending on the 
specified boundary conditions. Thus, the deflection gradient w,a can either be evaluated or 
modelled along G  using

 w n
w

n
s

w

s
,
α α α
=

∂

∂

+
∂

∂

 

The contour integrals on the left-hand side of eqn (55) depend on boundary variables mul-
tiplied by kernels derivable from the fundamental solutions using differentiation and the 
constitutive equations. Four of the boundary variables are unknown and need to be modelled 
using boundary elements. Special modelling schemes are required for the corner variables if 
any of them are not known.

Thus, the final form of the boundary integral equations on which a BEM scheme could be 
based is

 I F FF ( , )
λ

∗ + JF(F,F
λ

∗)+I w ww ( , )
λ

∗ + Jw(w, wl
∗ ) + IF(F,F

λ

∗,w,w
λ

∗) 

 + ( , ,A f F B f w qwabkk b l a abkk b l a l
∗ ∗ ∗+ +∫ )dW

W

 

 =
k A F B w

kw

[ , ( ) , ( )]

( )
alkk a alkk a

l

l
l

xx xx
xx

+





for =1, 2

for =3, 4
 (61)

where

 w3(x ) = w(x ) and w4(x ) =
∂
∂
w

n
(x ) (62)

8 CONCLUDING REMARKS
Fundamental solutions were derived in closed, compact and elegant form; to be practically 
useful, their parameters depending on the material constants need to be initially evaluated. 
For this purpose, tensor products such as those appearing in eqn (35)-(41) should be expanded 
to identify the coefficients of the respective polynomials and the roots of the 8th degree pol-
ynomial D(1, r) determined. With all their constant parameters known, their dependence on 
space co-ordinates is quite simple and their variation can be evaluated without high compu-
tational cost. From the nature of the roots of D(1, r) it is evident that complex number coding 
would be necessary in any computer implementation.

Expressions for the various components of the fundamental states appearing as weighting 
functions in domain and contour integrals should also be derived. The derivatives of the fun-
damental solutions also have simple forms although entering them into constitutive equations 
would generate longer expressions.

The potential of using the obtained fundamental solutions in BEM schemes for general 
laminates was demonstrated through the derivation of a set of four boundary integral equa-
tions involving four boundary unknowns. In contrast to the formulation based on just the 
three displacement components as field variables, the present one using the stress function 
and deflection generates integral equations in identical form and thus susceptible to a more 
efficient and flexible numerical manipulation.
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A computer-implemented BEM formulation solving the general laminate problem under 
any loading and boundary conditions is expected to present many challenges. Practically 
relevant simplifications are possible, such as the elimination of applied in-plane body forces 
from the formulation. Two issues that require rigorous mathematical treatment is the deter-
mination of the in-plane force potential for the fundamental states and the derivation of 
expressions for the free term coefficient k when the source point is a corner point. The latter 
issue is obviated if discontinuous boundary elements are used adjacent to a contour 
corner.

As already pointed out, it is expedient to specify only traction boundary conditions along 
the boundary for this formulation to work without further analysis and modelling. This is 
usually the case with stability analyses but the geometric nonlinearity of such problems intro-
duce additional analytical and numerical complexities. Similar challenges would be faced in 
attempts to extend the BEM scheme to dynamic problems.
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