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ABSTRACT
The paper presents a fluid-structure interaction analysis of fuel tanks with cylindrical and spherical 
compartments partially filled with a liquid. The compound shell of revolution is considered as a con-
tainer model. The shell is supposed to be thin, so the Kirchhoff–Love linear theory hypotheses are 
applied. The liquid is an ideal and incompressible one. Its properties and filling levels may be different 
within each compartment. The shell vibrations coupled with liquid sloshing under the force of grav-
ity have been considered. The tank structure is modelled by a finite element method, whereas liquid 
sloshing in the compartments is described by a boundary element method. A system of singular integral 
equations is obtained for evaluating the fluid pressure. At the first stage, both spherical and cylindrical 
fluid-filled unconnected rigid shells are considered. Different filling levels as well as small radii of free 
surfaces are taken into account in problems of liquid sloshing in spherical shells. The sloshing frequen-
cies in the presence of complete or partially covered free surfaces are determined for cylindrical shells. 
The boundary element method has proven to be effective and accurate in all the problems considered. 
At the second stage, the natural frequencies and modes of the dual compartment tank are obtained 
including sloshing, elasticity, and gravity effects.
Keywords: baffles, boundary and finite element methods, fluid-structure interaction, free vibrations, 
fuel tanks, sloshing

1 INTRODUCTION
The low frequency oscillations of free surfaces in partially filled containers significantly 
increase dynamic responses of structures containing liquids. This phenomenon is known as 
sloshing. It can result in severe structural damage, loss of stability, and failure.

In order to suppress sloshing, a variety of methods have been proposed, simulated, and 
tested. The boundary element method (BEM) has been successfully used in solution of both 
linear and non-linear sloshing problems. In order to solve the large-scale problems, research-
ers developed the multi-domain boundary element method (MBEM). The multi-domain 
collocation strategy was briefly introduced by Brebbia et al. [1] and then developed by Wang 
and Gao [2]. The MBEM is especially effective if the computational domain has a compli-
cated structure. It is successfully applied for numerical simulation of sloshing in 
multi-compartment fuel tanks with different types of baffles.

The effect of baffles on sloshing frequencies was studied by Biswal et al. [3]. The numer-
ical method using a finite element formulation was developed by Kumar and Sinhamahapatra 
[4] to analyze dynamic effects of perforated vertical baffles. Sloshing in spherical tanks for 
liquefied natural gas carriers was studied by Faltinsen and Timokha [5] and for water supply 
towers by Curadelli et al. [6]. Ravnik et al. [7] presented a fluid-structure interaction analysis 
of the cylindrical fuel tank with two compartments partially filled with a liquid. But flu-
id-structure interaction problems for fuel tanks of more complicated shapes are still not fully 
described in the literature.
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2 PROBLEM STATEMENT
In this paper, we describe applications of multi-domain and single-domain boundary element 
methods to the fluid-structure interaction analysis of compound fuel tanks.

Consider a fuel tank with cylindrical and spherical compartments. The internal baffles can 
be installed in both compartments for slosh suppression. The structure and its sketch are 
shown in Fig. 1.

Assume that both compartments are partly filled with an incompressible ideal liquid. Fluid 
motion is considered to be irrotational.

Suppose s is a wetted part of the structure surfaces, S01 and S02 are free surfaces of the 
liquid in spherical and cylindrical compartments, respectively. Let S0 be S S S0 01 02= ∪ . The 
wetted surface s consists of four parts, namely, σ = ∪ ∪ ∪S S S Sw w1 2 bot baf. Here Sw1 and 
Sw2 are the wetted surfaces of cylindrical and spherical parts, Sbot is a bottom surface of the 
tank and Sbaf is a baffle surface. The domains occupied with the liquid are denoted by S1 
and S2 for cylindrical and spherical compartments, respectively. Let Σ12=∂ ∂Σ Σ1 2  be the 
common part of wetted surface areas. The liquid densities are r1 and  r2, and filling levels 
are h1and h2 in S1 and S2, respectively. Let Rirbe the inner radius of the ring free surface 
(Fig. 1).

Consider at first free vibrations of the empty elastic shell structure. Assume that a time 
dependent vector of the shell displacements U is given by

 

 U u u= = ( )exp( ); , ,i t u u uΩ 1 2 3 , 

where W is a vibration frequency. The time factor exp( )iΩ  will be omitted further on. After 
separation of the time factor, the shell vibrations are described by the system of three partial 
differential equations

 L u u jij i
i

j= =

=

∑ Ω
2

1

3

1 2 3, , , , 

where Lij  are linear differential operators of the Kirchhoff–Love shell theory described by 
Wan et al. [8]. To obtain the natural frequencies Ωk  and modes uk k N=( )1,  of the shell 
structure, the finite element method is applied [7].

Figure 1: Shell structure with an internal baffle, its sketch and fluid subdomains.
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Let U= ( )U U U1 2 3, ,  be displacements of the fluid-filled elastic shell structure. After form-
ing the global stiffness and mass matrices L and M, the following equation of motion for the 
tank filled with the liquid has been obtained [7]:

 LU MU P+ = . (1)

Here P gives the fluid dynamical pressure onto the shell structure normal to its surface.
Assuming the flow to be inviscid and irrotational, the incompressible fluid motion in the 

3D tank is described by the Laplace equation

 ∇ =
2 0Φ , (2)

where F is a velocity potential.
To determine this potential a mixed boundary value problem for the Laplace equation is 

formulated in the double domain S1 ∪ S2. The non-penetration condition on the wetted tank 
surfaces s is following:

 
∂

∂ σ

Φ

n
=
∂

∂

w

t
. (3)

Here n is an external unit normal to the tank wetted surfaces, w denotes a normal component 
of the displacement vector U, namely, w = ( )U n, . Let functions ς1 t x y, ,( ) and ς 2 t x y, ,( ) be 
free surface elevations in the first and second compartments (Fig. 1). By pi denote the pres-
sure on the free surfaces S i0 (i=1,2). Let p0 be an atmospheric pressure. Then the kinematic 
and dynamic boundary conditions on S01 and S02 can be expressed as follows:
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On the free surfaces, the following formulae for pi (i=1,2) are valid:
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Here g is the gravity acceleration.
Denote by Φ( )i  values of the velocity potential F at points P ii∈∂ =( )Σ 1 2, .
Equations (1) and (2) are solved simultaneously using the shell fixation conditions rela-

tive to U, boundary conditions (3) and (4), and the following expressions for dynamical 
components of the liquid pressure on elastic walls:
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To define modes of shell vibrations coupled with liquid sloshing, we will represent displace-
ments of the fluid-filled tank as U=uf×exp(iwt). Here w and uf are natural frequencies and 
vibration modes of the fluid-filled shell structure.

3 THE MODE SUPERPOSITION METHOD FOR COUPLED DYNAMIC PROBLEMS
Consider the vibration modes of the fluid-filled tank in a form

 U u=

=

∑ck k
k

N

1

, (5)

where c c tk k= ( ) are unknown coefficients, and uk are eigenmodes of the empty tank. In 
other words, the mode of vibration of the fluid-filled tank is determined as a linear combina-
tion of eigenmodes of the empty shell structure. Note that the following relationships are 
fulfilled [7]

 L u M u M u u( ) ( ) , ( ( ), )k k k k j kj= =Ω
2

δ . (6)

Hence

 ( ( ), )L u uk j k kj= Ω
2
δ ,  (7)

where Wk is the k-th frequency of the empty tank vibrations. Equations (6) and (7) show that 
the abovementioned vibration modes have to be orthonormalized with respect to the mass 
matrix.

Let also introduce uk
i  as follows:

u
u
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k
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P
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∈

∈
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Σ

Σ

Consider F as a sum of two potentials Φ Φ Φ= +1 2as it was done by Degtyarev et al. [9]. 
Represent potential F1 as the following series:

 Φ1 1
1

= ( )
=

∑ c tk k
k

N

φ .  (8)

Here the time-dependant coefficients c tk ( ) are defined in eqn (5). To determine functions j1k 
k N=( )1, , we have the following boundary value problems:
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0k
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Si
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Here, w wk k
1 2,  are normal components of the mode uk  in the first and second compartments, 

w k
i

k
i

= ( )u n, . So functions φ1
1
k  and φ1

2
k  are solutions of problems (9) for i = 1 and i = 2, accord-

ingly, as in Ref. [10].
To determine potential F2, we must solve the boundary value problems of fluid vibrations 

in two disconnected compartments with rigid walls. These problems are solved separately for 
spherical and cylindrical parts. To obtain the sloshing modes, the following sequence of 
boundary value problems for auxiliary functions ψ 2 1 2k

i i =( ),  is formulated:
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value problems [9, 10] for each φ2 1 2k
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So for potentials F1 and F2 we obtain the next representations:
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Here c t d tk k( ) ( ),  are unknown time-dependant coefficients.
The effective numerical procedure for solution of eigenvalue problems (10) using the sin-

gle and multi-domain boundary element methods has been introduced in Refs. [7, 10].
Thus, the problem under consideration involves the following steps. First, it is necessary to 

obtain the sloshing frequencies and modes φ2k
i  using rigid wall assumption. Second, we 

obtain the natural frequencies Wk and modes uk  of the empty elastic tank. Then we define the 
free vibration frequencies and modes φ1k

i  of the elastic tank without considering effects of 
sloshing. When functions φ1k

i  and φ2k
i  are defined, we substitute them in eqns (11) and (1) and 

obtain the system of ordinary differential equations as it was done in Ref. [10]. Finally, the 
flow-induced vibrations of elastic structures are studied.

To define functions φ1k
i  and φ2k

i
 we use the boundary element method in its direct formula-

tion [1]. Dropping indices i, 1k and 2k one can obtain the main integral equation in the 
following form:

 2
1 1

0
0 0

πφ φP q
P P

dS
P P

dS
S S

( ) =
−

−
∂

∂ −
∫∫ ∫∫ n

. (12)

Here, S S= ∪σ 0, points P and P0 belong to the surface S. The value P P− 0  represents Car-
tesian distance between the points P and P0. In doing so, the function j defined on the wetted 
tank surface s presents the pressure, and the function q defined on the free surface S0, is the 
flux, q = ∂ ∂φ / n. To apply the MBEM, we introduce the artificial interface surface Sint [11]–
[12]. In MBEM, the computational domain is divided into a number of subdomains, and the 
BEM algebraic equations are established for each subdomain. Then the global system of 
algebraic equations is formed by assembling results of all subdomains in terms of the equi-
librium and matching conditions over common interface nodes. This system has a blocked 
and sparse character.
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The basic procedure is to start with the standard boundary integral equation for potential 
(12), replace Cartesian coordinates (x, y, z) with cylindrical ones (r,  q, z), and integrate with 
respect to z and q. We use furthermore the cylindrical coordinate system, and represent 
unknown functions as Fourier series by the circumferential coordinate q

w r z w r z r z r z i
k k jk jk

i i i i, , , cos ; , , , cos ; , ;θ αθ φ θ φ αθ( ) = ( ) ( ) = ( ) =1 2 jj k= =1 2 1 2, ; , ,..., (13)

where a is a given integer (the number of nodal diameters). In this case, the solution is inde-
pendent of the angular coordinate q, and the three-dimensional problem is reduced to a 
two-dimensional one in the radial coordinate r and the axial coordinate z.

Let G be a generator of the surface s. Using (12), (13) we have obtained the following 
system of singular integral equations for unknown functions j and q in problem (9):
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The system of singular integral equations for mixed boundary value problem (10) has been 
obtained in Ref. [10]. Numerical procedures to solve these problems based on the boundary 
element method are described in details in the papers [7, 9, 11].

4 SOME NUMERICAL RESULTS

4.1 Low frequency sloshing modes for partially filled spherical shells

4.1.1 Spherical shells without baffles
Now we turn to the problem of sloshing in the spherical container without baffles. Radius of 
the sphere is R1=1m; the filling level is h1.

The numerical simulation has been provided for different values of h1 0 2 1 991 1. / .< <( )h R  
and different modes a α =( )0 3, . Both SBEM and MBEM are applied here. The boundary 
elements with constant approximation of unknowns inside elements are used. In SBEM there 
are 200 elements along the spherical surface and 150 elements along the free surface. In 
MBEM we divide the computational domain into two parts by an artificial interface surface 
at h hint .= 0 5 1 using 100 boundary elements in each subdomain along the spherical surface 
and 150 elements along the free surface.
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We use practically the same mesh to find a numerical approximation of low eigenvalues for 
the so-called ‘ice-fishing problem’. In this problem, formally, we should consider an infinitely 
wide and deep ocean covered with ice, with a small round fishing hole. Sloshing in such 
‘containers’ was studied by McIver [12]. We approximate this infinite case using the spheri-
cal tank with the small round hole on its top. It allows us to compare our numerical results 
with those obtained in the papers [12–14].

Proposed boundary element approach gives nearly the same values as the other authors. In 
Tables 1 and 2 we compare our results obtained by using SBEM and MBEM with those 
obtained in Refs. [12–14] for axisymmetric (a = 0) and non-axisymmetric (a = 1) modes. 
Four first frequencies (m =1 4, ) are evaluated for each a. Here we consider different filling 
levels h1. The value h1/R1 = 1.99 corresponds to the ice-fishing problem. The results of Falt-
insen and Timokha [13], and Kulczycki et al. [14] are very close. Both Refs. [13–14] and [12] 
results analytically approximate the sloshing eigenvalues of the spherical tank.

It should be noted that results obtained by SBEM are more precise than MBEM ones, but 
the matrix size in SBEM is twice larger compared with MBEM. If un-baffled tanks are at low 
filling levels, it is preferable to use SBEM. The numerical analysis demonstrates that the 
lowest liquid sloshing frequency occurs for mode a = 1.

Considering our approximate natural sloshing modes one can observe how free surface 
profiles change with the liquid depth. These results are illustrated in Fig. 2 for the three low-
est eigenvalues of the mode a = 1. Here numbers 1, 2, 3, 4 correspond to the different 
non-dimensional filling levels: h1 /R1 = 1.0; 0.2; 1.8; 1.9, respectively.

In the spherical tank with 0 < h1/R1< 0.5 the lowest mode presents a spatial wave pattern 
that look like inclination of an almost flat free surface. Increasing the liquid depth yields more 

Table 1: Axisymmetric slosh frequencies of the fluid-filled spherical shell, Hz.

m Method

Filling level h1, m 

h1 = 0.2 h1 = 0.6 h1 = 1.0 h1 = 1.8 h1 = 1.99

1 [13,14],   3.8261   3.6501   3.7451   6.7641 29.0500
[12]   3.8261   3.6501   3.7451   6.7641 29.2151
MBEM   3.4034   3.5455   3.7294   6.6098 30.7081 
SBEM   3.8314   3.6510   3.7456   6.7665 29.1811 

2 [13,14],   9.2561   7.2659   6.9763 12.1139 51.8122
[12]   9.2561   7.2659   6.9763 12.1139 52.0467
MBEM   9.2636   7.2893   6.9796 12.0008 52.9393
SBEM   9.2686   7.2684   6.9780 12.1205 52.0255

3 [13,14], 14.7556 10.7443 10.1474 17.3960 74.2909
[12] 14.7556 10.7443 10.1474 17.3960 74.5537
MBEM 14.9214 10.7483 10.1496 17.3136 75.3139
SBEM 14.7763 10.7502 10.1512 17.4086 74.5547

4 [13,14], 20.1187 14.1964 13.3041 22.6579 96.6207
[12] 20.1187 14.1964 13.3041 22.6570 96.9560
MBEM 20.2066 14.2023 13.3083 22.5962 97.7771
SBEM 20.1498 14.2056 13.3110 22.6777 96.9021
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complicated free surface profiles. Figure 3 demonstrates the spatial wave patterns for a = 1, 
m = 1, 2, 3 at h1/R1 = 1.8.

4.1.2 Spherical shells with baffles
Consider the rigid spherical tank of radius R1 = 1 m filled to the depth h1 = 1.4 m. The inner 
periphery of the tank contains a thin rigid-ring baffle. The baffle position is hbaf = 1 m. The 
different annular orifices in the baffle are considered. Radii of these orifices are radii Rint of the 
interface surfaces. The first four frequencies for mode a = 1 are evaluated for radii Rint = 1.0 m, 
Rint = 0.7 m, and Rint = 0.2 m. Note that Rint = 1.0 m correspond to the un-baffled tank. The 
frequencies are presented in Table 3.

The results show that frequencies decrease as radius of the baffle orifice is decreased. Only 
the lowest eigenvalue is essentially influenced by installing the baffles.

Figure 4 demonstrates the first non-axisymmetric modes of liquid vibrations in spherical 
tanks with and without baffles. When the baffle is installed, the mode shape becomes almost 
flat.

4.2 Sloshing frequencies for partially filled cylindrical tanks with covered free surfaces

Consider eigenvalue problem (10) for the second fluid domain S2 bounded by cylindrical and 
spherical surfaces (Fig. 1). By H denote a height of the cylinder, by R1, R2 radii of the spher-
ical and cylindrical parts, and by h2 the filling level in S2. Let (0, zs) be centre coordinates of 
the sphere. The shell structure has following dimensions: R1 = 1 m; R2 = 1.2 m; zs = 1.5 m; H 
= 2.m. The modes and frequencies are evaluated for different h2 in the range of 

Table 2: Non-axisymmetric slosh frequencies of the fluid-filled spherical shell, Hz.

m Method

Filling level h1, m

h1 = 0.2 h1 = 0.6 h1 = 1.0 h1 = 1.8 h1 = 1.99

1 [13,14], 1.0723 1.2625 1.5601 3.9593 18.9838
[12] 1.0723 1.2625 1.5601 3.9593 19.1582
MBEM 1.1034 1.2777 1.5638 3.9606 19.1603
SBEM 1.0723 1.2626 1.5603 3.9508 19.1130

2 [13,14], 6.2008 5.3860 5.2755 9.4534 41.3491
[12] 6.2008 5.3860 5.2755 9.4534 41.7683
MBEM 6.1227 5.3534 5.2749 9.4582 41.5327
SBEM 6.2090 5.3697 5.2764 9.4538 41.5333

3 [13,14], 11.8821 8.9418 8.5044 14.7548 63.5354
[12] 11.8821 8.9418 8.5044 14.7548 64.0323
MBEM 11.9650 8.9529 8.5062 14.7648 63.9483
SBEM 11.8981 8.9429 8.5069 14.7574 63.8783

4 [13,14], 17.3581 12.4234 11.6835 20.0224 85.9166
[12] 17.3584 12.4234 11.6835 20.0224 86.3001
MBEM 17.4540 12.4276 11.6863 20.0394 86.2972
SBEM 17.3842 12.4291 11.6884 20.0278 86.2034
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Figure 2: The radial wave profiles m = 1, 2, 3 for different non-dimensional liquid depths 
h1/ R1.
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0 5 2 392 1. / .< <h R . The inner radius Rir  of the ring free surface is defined by the dive level 

of the spherical shell zs and the filling level h2 as follows: R R h zir s= − −( )1
2

2

2
.

The results are illustrated in Fig. 5 for two lowest eigenvalues of the mode a = 1. Here 
numbers 1, 2 correspond to frequencies of cylindrical tanks with ring and circular free sur-
faces, respectively. If h2 = 0.5 m, then both tanks have the complete circular free surfaces.

Figure 5a) and b) demonstrates changes in the first and second frequencies of the mode a 
= 1 via the filling level h2. The values of frequencies increase significantly with increasing the 
inner radius of the ring free surface. The maximum values of frequencies correspond to 
h z R Rs ir2 1= =; . Here we get the analogy with the “ice-fishing problem” for the spherical 
shell with h1/R1 = 1.99 (see Tables 1 and 2). Sloshing frequencies of cylindrical shell with 
circular free surface are stabilized when h2 > zs; one can observe here the typical monotonic 

Figure 3: Spatial wave patterns for a = 1; m = 1, 2, 3.

Table 3: Sloshing frequencies of the fluid-filled spherical shell with baffles, Hz.

m

w2/g

Rint = 1.0 m Rint = 0.7 m Rint = 0.2 m

1 2.1232 2.0435 1.4234
2 5.9800 5.9723 5.8405
3 9.4789 9.4785 9.4567
4 12.9431 12.9430 12.9358

Figure 4: Spatial mode shapes for a = 1; m = 1 of un-baffled a) and baffled tanks b).
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dependences. The benefit of a partly covered free surface is that it increases the natural 
frequencies.

4.3 Modes and frequencies of the empty cylindrical–spherical tank

Consider the elastic spherical-cylindrical tank without baffles (Fig. 1). The shell structure 
is clamped at the bottom edge. Natural frequencies Ωk  and modes uk , k N=1, of the shell 
structure without the liquid are calculated using FEM as it is proposed in Ref. [7]. The shell 
structure has the following dimensions: R1 = 1 m, R2 = 1.2 m, zs = 1.5 m, H = 2.0 m, wall 
thickness h = 0.025 m; and material properties: Young’s modulus E = 2·105 MPa, Poisson’s 
ratio n = 0.3, density rs = 2700 kg/m3. Four modes of vibration are shown in Fig. 6.

   The modes 6a) and 6b) correspond to the duplicate frequency Ω Ω1 2= = 4.6359 Hz. This 
frequency is the lowest one of the mode a = 1. The axisymmetric mode 6c) corresponds to 
the frequency W3 = 5.9312 Hz, that is the lowest one of the mode a = 0. The axisymmetric 
mode 6d) corresponds to the frequency W4 = 50.9721 Hz.

Figure 5: Frequencies of cylindrical shell with ring and circular free surfaces.

Figure 6: Modes of the empty cylindrical–spherical tank.
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4.4 Modes and frequencies of the fluid-filled cylindrical–spherical tank

To define coupled modes of harmonic vibrations of the elastic tank, we represent the time- 
dependant unknown coefficients in series for potentials Φ Φ1 2, , eqn (11), and for vibration 
modes u of the fluid-filled shell, eqn (5), in the form

 c t C e d t D ek k
i t

k k
i t

( ) = ( ) =
ω ω; , (14)

where w is an own frequency, Ck  and Dk  are unknown constants. Using (14) we obtain 
the eigenvalue problem for evaluating natural frequencies and modes of the fluid-filled 
cylindrical-spherical tank [9].

The filling levels are h1 =1 m and h2 = 1.5 m. The lowest frequencies of the double tank are 
presented in Table 4.

The first frequencies are very close in value. For example, modes 1–5 have frequencies 
with difference within 1 Hz, and these modes are associated with different vibration types. 
The first twenty modes are predominantly sloshing ones.

5 CONCLUSIONS
The numerical procedure based on the coupling finite and boundary element methods is 
developed for the fluid-structure interaction analysis of the dual compartment tank. The con-
sidered problem has been solved using the multi-domain and single-domain boundary 
element approaches. The analysis demonstrates that sloshing and shell vibrations can not be 
considered separately. The lower frequencies of the fluid-filled tanks decrease to 0.2–0.4 and 
0.1–0.6 of those of empty tanks for spherical and cylindrical compartments, respectively. The 
fluid-stricture interaction effects are more significant for the outer cylindrical part.
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