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Abstract
The article explores the problem of train rescheduling based on the actual situation. The proposed sto-
chastic model uses specific distributions of operating times which are dependent on the current traffic 
conditions. The arrival time distribution is considered as a result of adjusting the train trajectory by 
speed control. The results of modelled arrival distributions correspond well with the experimental data 
received at the Russian Railways. The proposed model is used for prevention of sequence-of-trains 
conflicts and violations of connections. The basis of deviation prediction is two-train model of mesa-
level which uses actual features of scattering of the operation times both at sites and at stations. The 
article also proposed a new measure of arrival delay which considers the share of satisfied passengers.
Keywords: local adjustments, online rescheduling, stochastic mesa-mode, train traffic.

1  Introduction
Modelling the train traffic on the railway section is necessary for the optimal schedule crea-
tion. Ensuring a high level of traffic stability is the aim of constructing a tactical schedule. 
There is a need to use the online rescheduling when there is assumed a disrupting process. 
Modelling in both of these cases has significant differences. Tactical graphic takes into 
account the average process conditions. A stochastic model for the schedule calculation is 
based on fixed probability densities that characterize the operating times. Such a model very 
approximately describes the real traffic options because of using a large diversity of situa-
tions and averaged densities. It is necessary to include sufficiently big buffer and running 
time supplements in the schedule to partially eliminate this disadvantage. 

Distribution of the train arrivals at a certain station is formed from the scattering of travel 
and stopping times. There are prevalent models that take into account only random devia-
tions of travel times. The known models of other type suggest that adjustment of traffic is 
made at the stations only in order to eliminate delays. This activity is to relocate the depar-
ture moments or change the order of trains. In each individual case, use rigid rules to resolve 
conflicts between trains which arrive at the transfer station. Such a regulatory framework is 
used in the model of Berger et al. [1]. Using the simplified model and hard algorithms of 
conflict resolution is useful when creating a normative schedule which however is a rough 
approximation to reality. This assumes the absence of operative dispatching which is a funda-
mental drawback of the existing methods of solving long-term scheduling problems. Section 
3 discusses the main points of creation of the generic stochastic model which combines the 
two specified approaches.
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Operative correction of train traffic can significantly improve the quality of functioning of 
the railway section. The main feature is to carry out an elementary cycle of modelling for that 
local area where there is a single disturbance. The deviation arises in some a ‘cone of delays’ 
if of moving an intense train flow. It is necessary to operatively change the trajectory of each 
of the trains to eliminate the spread of delays. This process is realized through the efforts of 
train manager and drivers. The train dispatcher implements centralized control of the entire 
system function, while the train drivers solve local problems on delays compensation. This 
all-inclusive technique is not reflected in the existing models.

The models used in the known papers have two drawbacks. One drawback is the lack of a 
framework that reflects a purposeful driver’s operation (or of on-board unit control) for the 
perturbation compensation. Another disadvantage is that they ignore the following facts. The 
distributions that characterize partial travel times are distinct at different times of day and in 
different situations. Obviously, in the model which is used for online regulation, the param-
eters of these distributions should be established based on the emerging conditions. Section 4 
discusses the impact of the specific situation at mentioned parameters. 

The stochastic model which comes really close to our approach is in Büker and Seybold 
[2]. They basically have the same form of distribution of the train arrivals and respective 
waiting policies. However, they concentrated on train interactions independent of the specific 
operating conditions and of activities of the personnel. We will enhance their model to ana-
lyse the impact of actual factors on the distribution of arrival times.

Computer experiments show that an output distribution width increases with the expansion 
of the forecast horizon in case of weak control algorithm. In many cases, this modelling result 
does not correspond to the actual movement of trains. When using the effective adjustments 
which are implemented by managers and drivers, the distribution width is stabilized over 
time. The problem of the effect of the driver operation on the distribution of the train arrival 
moments is explored in Section 5. Combining techniques of forming delays on sections and 
stations allows you to create the generalized stochastic model of train traffic. The basis of the 
formal description of the motion is two-train model that is consistently applied to all pairs 
of train. A generalized representation of the traffic and the process of conflicts arising is a 
probability graph. 

2 Lit erature review
Many scholars study the rescheduling problem which considers the way to recover from a 

disturbed movement of trains. The researches were devoted to the algorithms that optimally 
adjust the schedule. The well-known papers [3, 4] provide an extensive survey of recovery 
models and algorithms for real-time rescheduling. Depending on the focus, the models used 
to solve the scheduling problem that differs by levels of infrastructure and traffic detail. A 
line appears as a sequence of segments between two major stations with few intermediate sta-
tions, while a network is composed of one or several junctions of lines. Macroscopic models 
contain least details and have a more aggregated representation of some resources (e.g. a 
station), while microscopic representation includes a lot more detail such as block sections. 
Existing models are not focused on direct description of the points of conflicts between trains.

Analyses of previous studies show an increasing interest in stochastic approaches and 
models that help create adequate forecasts and make optimal decisions for traffic recovery. 
One of the first papers considering this problem [5] proposed analytical method for the deter-
mination of delays by a convolution of the initial (inlet area) and current delays. The analysis 
was limited because it used the assumption of uniform distribution of secondary delays. In 
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reality, this assumption is not confirmed. Most stochastic models to analyse propagation of 
delays focused on single-track sections or on simple junctions. Classical stochastic models 
for the propagation of delays had been studied intensively, most importantly in Refs [6, 7]. 
The papers proposed the approximation of delay distributions to reduce the computational 
effort. The paper [7] represents train traffic in a form of occupying an intermediate position 
between the macro-models and the models with very detailed description of the process, i.e. 
micro-models. Cumulative distribution of delays is calculated from the sequence of activities, 
which is defined by a stochastic event graph.

Stochastic analytical model for a traffic on a double-track line was proposed in Ref. [8]. 
The paper investigates delays of a fast train caught behind slower ones. The section is mod-
elled as an infinite server. The running time distributions for each service are obtained by 
solving a system of linear differential equations. This model gives a good insight into delay 
propagation on a simple line but becomes too complicated to handle when dealing with large-
scale real-world networks. The approach for predicting waiting times using queuing system 
with a semi-Markovian kernel was presented in Ref. [9]. Description of the service process is 
based on an application of the theory of blocking times and minimum headway times.

A stochastic model for delay propagation and forecasts of arrival and departure events was 
proposed in Ref. [1]. The model includes the general train waiting policies on stations and 
considers discrete distributions of travel time profiles. The model is formulated with respect 
to a directed event graph. Another model proposed in Ref. [10] is also designed to assess the 
knock-on delays. The analytical probabilistic model takes into account the duration of stops, 
stochastic relationship between the trajectories of trains, speed fluctuations and dynamic 
delay propagation. A new scheme was proposed for the exact determination of parameters of 
the distribution model based on the maximum likelihood method.

Stochastic simplified model can be used to find an optimal allocation of the running time 
supplements of a train on a number of consecutive trips along the same line [11]. The result of 
this study is the optimal distribution of supplements between the site elements. The approach 
is based on the periodic event scheduling developed in Ref. [12]. An analytical method such 
as the max-plus algebra (MPA) is used to evaluate stability of the schedule. 

Various known models describe the functions of frequency and length of random traffic 
deviations. Thus, the exponential distribution is used as a stochastic model of every compo-
nent [7–9]. Changes of distribution are due to ‘internal’ reasons. Obviously, accumulation 
of the individual random variables leads to exponential behaviour of delays. This problem is 
explored in Ref. [13] and requires further study especially for the mixed flow of passenger 
and freight trains.

 Berger et al. [1] solve the problem of train traffic rescheduling on a large network. Scatter-
ing of arrival moments is treated as a random variable generated by a spread of the departure 
times and the running intervals. The basis of the analysis is two-train model. This model 
allows to define the order of departure of the train from the initial station and distribution of 
the respective moments of departure. The authors use a discrete representation of distribu-
tions.

A number of studies considered a model that comprehends two train runs, each with trans-
ferring passengers at some stations [14]. The model is illustrated as a Petri net graph. The 
approach proposed in Ref. [2] uses a probabilistic operational graph, which considers con-
flicts within transfer operation. The interlinking conflicts are mapped in the model by manipu-
lating the time distributions of the elementary activities. The paper uses two-train mesoscopic 
model and the FIFO rule for conflict resolution. Use of both conditional and unconditional 
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convolution is specifically made. Various types of delay are modelled by means of cumulative 
distribution function. Described model is logically incomplete. The authors consider only the 
station and crossing as the conflict points. To complete the model, you must use a resolution 
of the sequence-of-trains conflicts at a section.

A significant number of studies are devoted to the development of criteria for determining 
the optimal solutions for train traffic management. Top-level rail experts created a set of rail-
way performance indicators that measure efficiency from the perspectives of the government, 
passenger/client, infrastructure manager and train operating company [15]. A very common 
measure to quantify the service quality is to calculate the punctuality at different nodes in the 
system [12]. Using only the punctuality criterion has some drawbacks. It does not take into 
account the number of passengers affected by delays nor does it cover the case where pas-
sengers are missing connecting trains. The new approach overcomes the above drawbacks, as 
it accounts for passenger delays (personal passenger time is measured in minutes) instead of 
only delays [10]. However, the total duration of delays weakly reflects satisfaction of the pas-
sengers. Obviously, there is a certain threshold mechanism, where the allowable time limits 
depend on the non-nervous traveller sentiment.

Previous studies have used the distributions of typical operations (running, stopping) in 
the probabilistic model that are unchanged in time and do not depend on the coordinates of 
a particular path element. It is required to take into account the circumstances in a particular 
local problem, individual distributions of which depend on the influencing factors. It is also 
necessary to model the impact of the online system adjustment at the quality of train traffic. 
Ways to solve these problems are described in the following sections.

 3 M esoscopic stochastic modelLing of train traffic 
Two types of deterministic models are used in the analysis of intensive train traffic. The 
micro-model reflects the train running with a readability corresponding to the block sections. 
Speed within block section is considered as a constant value and it changes when the corre-
sponding signal is received from the next section. The micro-model is losing its effectiveness 
in the presence of random disturbances. 

From the viewpoint of queuing theory all the points of conflict on open tracks and at sta-
tions may be interpreted as server systems. This is considered as the mesoscopic approach for 
the creation of train traffic model. The mesa-model assumes that an elementary checking ele-
ment significantly exceeds the length of a block section. Checkpoints such as stations, stops 
and crossings are the element boundaries. The speed profile and a scheduled time interval 
between checkpoints here are taken as fixed values.

Random components, which are due to peculiar specific conditions of traffic and style 
of work of the driver, are reflected in a common distribution of the running time. In reality, 
coordinate control and centralized management of train runs (i.e. introduction of corrections) 
are made at the moments of train passage at the checkpoints. Decision to change the mode of 
run is made in the dispatch centre and is based on a mesa-model. Movement of a train along 
a spatial trajectory is represented as a set of elements between the control points. Complete 
time of a train passage by the trajectory is an additive value namely a sum of the elementary 
operation times. The trajectory of the train is modelled by a directed graph in the time domain 
(an activity graph), some nodes of which gather several arcs (Fig. 1). 

The nodes of the graph represent the states of the process such as arrivals and departures on 
the station and the points of conflicts. Time deviation from the timetable is considered as an indi-
cator of every state. The arcs of the graph reflect transition of the train from one state to another 
that is an activity operation. Some authors (e.g. Büker and Seybold [2]) include connections for 
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the passenger transfer and inter-train conflicts in this list. Length of the arcs reflects operating 
times that characterize the transition between checkpoints. Additional arcs correspond to delays 
that occur due to the influence of other trains, i.e. conflicts on sites or stations.

The approach considered is the basis for a generic stochastic model of train traffic on the 
railway section [13]. The process of accumulating the delays is represented as a tree of inter-
ferences, which is the graph whose nodes reflect the presence of conflicts between trains at 
the control points. It is assumed this points can be of two types, namely with primary (i.e. 
input) disturbances or with secondary delays. The arc length is considered as a random vari-
able that distinguishes it from the most of previously reported frames.

 4  Stochastic modeLling of control activity
The driver or the on-board system produces the permanent control over the motion param-
eters of the train. Speed is adjusted so as to perform the schedule. The time trajectory of the 
train is adjusted occasionally by the infrastructure manager. The purpose of regulation is 
timely arrival at checkpoints. 

The running time is affected by random factors that are characterized by a probability 
density function. Over time, this function is changing, and its support becomes wider if there 
is no adjustment. At the same time adjustment by the system or the operator can stabilize the 
distribution and even to narrow its support.

Now we consider modelling the process of forming the probability distribution of deviation 
of the arrival time from the scheduled one, when there is a driver’s control work. Let t0  be 
the time of departure, and ( )=s s t and ( )=v v t traversed path and speed of the train, respec-
tively. It is assumed that the minimum =v vmin1 and maximum =v vmax2 allowable speeds are 
known. We denote by v0 average speed of a train. Random factors lead to the scattering of 
trajectories (Fig. 2).

Letτ ( )s be the actual arrival time of the train at P. If the train moves at a speed of v j , the 
moment of its arrival is

	

( ) = +a s t
s

v
  j

j
0 ,  j = 0, 1, 2,   < ≤ ≤0 s s s1 2 .� (1)

The random variable  τ( ) ( ) ( )= −Y s s a s0 is the deviation from the scheduled arrival time 
a

0
(s). Note that ( )Y s takes the values of different signs.
Denote by ( )f t s; the density function of the random variableτ ( )s , and by ( )g t s; the den-

sity function of the random variable ( )Y s . Obviously,

Figure 1: F ragment of the graph which reflects the passenger interlinking.
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	 ( )( ) ( )= +g t s f t a s s; ;0
.� (2)

The interval [ ]( ) ( )a s a s,2 1 is the support of ( )f t s; , i.e. ( ) =f t s; 0 when ∉t a s a s,2 1[ ]( ) ( ) , 

( ) ( ) ( ) ( )− − a s a s a s a s,2 0 1 0 is the support of ( )g t s; .
Given the limitations on the speed, we obtain a one-to-one correspondence between the points 

of these intervals: ( ) ( )′ = +t A s t B s2 2 , where ( ) ( )∈ t a s a s,2 1 1 1 , ( ) ( )∈ t a s a s' ,2 2 1 2 ,
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,	

		  ≤ ≤s s s1 2 .� (3)

Note that the length of the interval [ ]( ) ( )a s a s,2 1 increases when the boundary condition on 
the permissible speed is not changed, i.e. if there is no intervention to regulate the movement. 
In this case, the scattering of the considered probability distribution increases. Speed change 
in some points, which produces the driver, results in a decrease of scattering.

Assumption. Suppose that for each fixed sτ τ ( )( ) ( ) ( )= +s A s s B s
d

1 , where ( ) ≠A s 0 and 

( )B s are defined in eqn (3). This is equivalent to ( )( ) ( )( ) ( ) ( )= + +Y s A s Y s a s B s
d

1 0 1 . Here 

we have used the notation =W W
d

1 2 as random variablesτ ( )s and [ ]+A B are identically dis-
tributed.

Note that if ( )f t is the density of the random variable X, ≠A 0 and B are constants, then 
−



A

f
t B

A

1 is the density of the random variable AX + B.

From this observation, assumption 1 and eqn (2), we deduce that
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Figure 2: G raphs of functions ( )= −s v t tj 0 , j = 0, 1, 2.
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Thus, we conclude that the density of the random variable ( )Y s with increasing s is sub-
jected to a linear transformation. With increasing ( )A s supports of densities ( )f t s; and ( )g t s;  
extend.

The intervention of the driver consists in change of speed at the point s
3
. Speed is reduced, 

if the train is ahead of schedule, or increases in the opposite case (Fig. 2(b)). The distribution 
of the time of arrival becomes narrower.

The analysis shows that the limitations imposed, <v v21 2 , >v v11 1 , also result in linear 
transformation of ( )f t s; 3 density. The form of the distribution ( )g t s; 2 in the point P  is main-
tained, changing only its parameters. Experimental study on the Russian Railways shows 
that the real scattering of arrival times is well approximated by a gamma distribution. In 
the sections of railway, which carried out effective local control, the scattering width of the 
arrivals differs a little at different sites. The dispersion increases through the train route if the 
regulation is weak.

5 A ctualization of operating time distributions
In the real world, the actual train arrivals and failures of infrastructure in the coming hours are 
known quite accurately. This is a prerequisite to develop a more accurate prediction of traffic. 
The operational model is constructed by taking certain influencing factors into account. Thus, 
the specific parameters of operating times scattering can be deduced.

You must use the specific probability distribution of operating intervals to create a predic-
tive model for each real situation. Such distributions for the running and stopping times are 
determined from historical data. By the historical data we mean the situations (scenarios) that 
occurred in previous periods on considered track section. Parameters of the operating time 
distributions depend on key factors like constraints on the train passage or weather condi-
tions. 

It is necessary to find out how to use historical data for a complete formalization of sto-
chastic model of the train traffic. The idea of the early proposed method for determining the 
forecasted indicators on the basis of previous experience is known as situational heuristic 
predicting [16]. The method is based on constructing the array of experience Z, which is a set 
of indicators of the line functioning in certain real-life situation. This situation is determined 
by the values of influencing factors, such as the number of cars or trains at the adjacent sta-
tions, etc. The array Z is a multidimensional matrix for various combinations of the factors 
and their associated cells that contain the realization times τ i , ≤ ≤i n1 , of a certain activ-
ity (e.g. travel time) in every historical situation. The array Z is considered in the following 
general form:

	

τ
τ

τ
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Φ Φ Φ

Φ Φ Φ

Φ Φ Φ
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2 ,� (6)

where Φ j
i denotes ith particular observation of the influencing factor with number j, ≤ ≤j m1

. Thus, sequence of values Φr
1 , Φr

2 , … ,  Φm
r represents rth historical situation with ∈r N .

The paper [17] solves the problem of estimation of the process time τ +n 1 pointwise. This 
assessment is carried out by means of the selection of situations, which are close to the 
(n + 1)-th scenario. Note that two situations i

1
 and i

2
 are considered as close in case when 
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the concrete realizations, Φ j
i1

 
and Φ j

i2 , are similar in some predetermined way. The inequal-
ity  εΦ −Φ ≤+

j
i

j
n

j
1 can be used as a criterion of closeness between the pair of situations, 

where ε j  represents allowable deviation value of jth factor. Seeking forecasted valueτ +  n 1
is defined as the mean betweenτ k from the close scenarios, i.e. by using the interpolation.

We propose a slightly different approach to the construction and use of the Z array. The 
matrix includes process times that have been implemented for a certain set N of previous 
actual situations. We assume the factors Φ j are mutually independent random variables, 
and each of them has a distribution ( )( ) = Φ <F x xPj j . In contrast to the mentioned paper 
we do not compute a specific value τ +n 1  but restore the distribution function of the random 
variableτ . Method (a) of distribution restoring assumes the random variableτ considering 
the valuesτ1  , …, τ n can be represented as a linear combination of all the factors, i.e.

	
∑τ λ= Φ
=

j j

j

m

1

,� (7)

where λ j  are coefficients of sensitivity to changes in the factors Φ j .
We have the following system of equations:
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n

m n
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1

1
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1 2
2

2
2

2

1 1 2 2
� (8)

This system of equations is considered as overdetermined, because the number of equa-
tions n exceeds the number of unknown variables m. Some ‘optimal’ vector solution 
λ λ λ λ( )= ,  , … ,  m1 2 can be found by the method of least squares. The following relation is 
considered as a measure of closeness of the left and right sides of eqn (8):

	
∑ τ λ( )( )− →

λ
=

f mini i
i

n
2

1
,� (9)

where ∑λ λ( ) = Φ
=

fi
j

m

j
i

j
1

. We calculate the required distribution after finding the vector λ  

by using eqn (7). Determination of the density function of τ  is reduced to (m – 1)-fold con-
volution of the densities of new random variables  λ( )Φj j .

The density τf can be determined by the other approach (b). The method is based on the 
fact that an array of experience Z contains a sample of values from the distribution of the 
random variableτ . For this sample you can restore the law of distribution using the good-
ness of fit (e.g. Kolmogorov–Smirnov test or Chi-squared test). Thereby our approach is 
more common and informative than that in Ref. [16] and also allows the best use of the 
initial data Z. 

Experimental studies provide the data that show the density of the arrival time to have 
a little asymmetric Gaussian. A closer approximation is a Weibull distribution. The main 
results are the following. The parameters of the arrival times density are almost identical for 
all the stations in the standard periods. But the dispersion increases an order of magnitude 
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from 0.6 to 6.9 min2 at night (for the freight flow). At the same time the average delays are 
small. A similar pattern is in the suburban traffic.

6  The quality measure of passenger train traffic
Punctuality in the passenger traffic segment is an important component of quality of the rail ser-
vice. High level of punctuality increases the number of users of transport services and, conse-
quently, income of the carrier and operator companies. Most studies on optimal traffic manage-
ment have used the total cumulated delay as a measure of punctuality. However, this approach 
does not fully reflect the situation – how to completely satisfy the demands of the passengers.

The main characteristic of an operator which should be observed by him when he organ-
izes the traffic control is as follows. The passenger begins to perceive the late arrival of the 
train as a significant delay only for sufficiently large values of delay. This measure has the 
uniqueness for every station and for different times of day. For example, a person perceives 
the delay more acutely during peak hours. Therefore, for the ith situation in this period the 
threshold of perceptionTd

lim
 ij
is smaller. The measure of quality of the service should not 

contain all the delays, but that lateness exceeds a specified threshold.
Another circumstance that must be considered is the damage caused by delays for different 

groups of passengers. Obviously, the approach is most appropriate when the priority service 
is given to numerous groups. One example is the traffic management on the suburban line. 
During rush hours, a manager devotes most attention to stations where there is mass board-
ing and alighting of passengers. He instinctively tries to make such adjustments to reduce 
the delays. Therefore, if the delay exceeds the threshold value, it is advisable to assess the 
damage by the number of passengers Mdij

who fell under the delay.
We formulate the following criterion for the quality of traffic in the heavy passenger train 

flow, using the approach just described. The scenario is considered the best, if its implemen-
tation gives delayed arrival of the minimum number of passengers at all the stations. In this 
case, the delays that exceed certain defined thresholds are taken into account:

	 ∑ →M min
dij

,  τ ≥ Tij
lim
dij

,  i = 1, 2, … , m,  j = 1, 2, … , n,� (10)

where the index (ij) denotes the value of describing events occurring in the ith interval at the 
time of day at the jth station. Obviously the specified threshold must be peculiar for different 
types of trains such as high speed, intercity or commuter.

For example, the threshold value of delayed commuter trains during rush hours can be set 
from 1 min to 2 min in other periods. For those of local trains that have to deliver passengers 
on time at the connection station, this interval should be shortened to 0.5 min. Using this rule 
it enables the separation of any delays into the groups, each of which obeys the following 
relation:

	
τ τ≥ alld k .� (11)

In this case the objective function takes the following form:

	
∑Θ( ) =

k

J ndel k ,   k =1,…,K,� (12)

where K is the number of train groups with different boundary values τ ac k .
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7 Con clusions
In this article, we present an approach that allows considering the effect of adjustments on 
the traffic characteristics. The model developed takes into account the actual situation and 
its impact on operating times. The probabilistic forecast uses historical data to determine the 
improved time distributions. The calculated results agree well with the real data on the train 
traffic. The proposed new criterion of punctuality provides more correct adjusting solutions.

The next step of this study is to use the model developed in solving a specific real-time 
problem. In particular, we will carry out a detailed study on a linear transformation of the 
arrival time distribution when the local adjustment is made.
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	 [6]	C arey, M. & Kwieciński, A., Stochastic approximation to the effects of headways on 
knock-on delays of trains. Transportation Research, Part B, 28, pp. 251–267, 1994. 
DOI: 10.1016/0191-2615(94)90001-9.

	 [7]	M eester, L.E. & Muns, S., Stochastic delay propagation in railway networks and phase-
type distributions. Transportation Research, Part B, 41, pp. 218–230, 2007. DOI: 
10.1016/j.trb.2006.02.007.

	 [8]	H uisman, T. & Boucherie, R.J., Running times on railway sections with heterogeneous 
train traffic. Transportation Research, Part B, 35, pp. 271–292, 2001. DOI: 10.1016/
S0191-2615(99)00051-X.

	 [9]	 Wendler, E., The scheduled waiting time on railway lines. Transportation Research, 
Part B, 41(2), pp. 148–158, 2007. DOI: 10.1016/j.trb.2006.02.009.

	[10]	Y uan, J., Stochastic Modelling of Train Delays and Delay Propagation in Stations, PhD 
Thesis, TRAIL Thesis Series no. T2006/6, the Netherlands, 142p., 2006.

	[11]	 Kroon, L.G., Dekker, R. & Vromans, M., Cyclic Railway Timetabling: A Stochastic 
Optimization Approach. Proceedings of the 4th Workshop on Algorithmic Methods and 
Models for Optimization of Railways (ATMOS’04), eds. F. Geraets, L. Kroon, A. Sch-
oebel, D. Wagner & C. Zaroliagiis, pp. 41–66, 2004.

	[12]	 Vromans, M., Reliability of Railway Systems, PhD Thesis. TRAIL Thesis series no. 
T2005/7, The Netherlands TRAIL Research School, 244p., 2005.

http://api.elsevier.com/content/article/PII:S2210970612000182?httpAccept=text/plain
http://api.elsevier.com/content/article/PII:S2210970612000182?httpAccept=text/plain
http://api.elsevier.com/content/article/PII:S0191261514000198?httpAccept=text/plain
http://api.elsevier.com/content/article/PII:0191261594900019?httpAccept=text/plain
http://api.elsevier.com/content/article/PII:S0191261506000221?httpAccept=text/plain
http://api.elsevier.com/content/article/PII:S019126159900051X?httpAccept=text/plain
http://api.elsevier.com/content/article/PII:S019126159900051X?httpAccept=text/plain
http://api.elsevier.com/content/article/PII:S019126150600018X?httpAccept=text/plain


	 B. Davydov et al., Int. J. Transp. Dev. Integr., Vol. 1, No. 3 (2017)� 317

	[13]	C hebotarev, V., Davydov, B. & Godyaev, A., Stochastic Traffic Models for the Adaptive 
Train Dispatching. Proceedings of the 1st International Scientific Conference on “Intel-
ligent Information Technologies for Industry” (IITI’16), Rostov-on-Don, Russia, May 
16–21, 2016.

	[14]	G overde, R.P.M., A delay propagation algorithm for large-scale railway traffic net-
works. Transportation Research, Part C, 18(3), pp. 269–287, 2010. DOI: 10.1016/j.
trc.2010.01.002

	[15]	 Beck, A., Bente, H. & Schilling, M., Railway Efficiency: An Overview and a Look at 
Opportunities for Improvement. The International Transport Forum, Discussion paper 
no. 2013–12, 44p., 2013.

	[16]	 Shapkin, I.N., Yusipov, R.A. & Kozhanov, E.M., Modelling train traffic based on mul-
tifactor setting technological operations. Vestnik VNIIZhT, 4, pp. 30–36, 2006.

	[17]	 Törnquist Krasemann, J., Design of an effective algorithm for fast response to the re-
scheduling of railway traffic during disturbances. Transportation Research, Part C, 
20(6), pp. 62–78, 2012. DOI: 10.1016/j.trc.2010.12.004.

http://api.elsevier.com/content/article/PII:S0968090X10000124?httpAccept=text/plain
http://api.elsevier.com/content/article/PII:S0968090X10000124?httpAccept=text/plain
http://api.elsevier.com/content/article/PII:S0968090X10001671?httpAccept=text/plain

