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Abstract
The utilization and the quality of public transport are important for the customers, maintainers and ser-
vice providers. Passive measurement techniques, when humans are not involved are the cheapest way 
for collecting large amounts of long-term data from multiple public transport lines. Useful data can be 
collected from various sources, such as from cameras, infrared sensors and Wi-Fi routers. We addressed 
the problems of estimating passenger counts in two different ways, and also to get travel statistics like 
the number of passengers getting on or off a vehicle at a bus stop; and even to compute an origin–
destination matrix from Wi-Fi monitoring data. In this study, we focus on Wi-Fi data, which can be still 
useful for extracting relevant data after many years. Here we describe Wi-Fi data collection methods, 
and then prove the usefulness of applying simple artificial intelligence-based methods to extract infor-
mation from the huge amount of Wi-Fi data. We will also show that ‘lower-level re-estimation’ can be 
useful for further optimization, which means that globally modelled data may have to be re-modelled 
on partially selected groups to get better results. Namely, after building linear models and estimating 
absolute and relative errors, we found that the relative error of the Wi-Fi-based estimation can be mark-
edly reduced if data are processed and analysed in more detail. When a daily Wi-Fi analysis is split into 
between-stops parts, an additive linear correction can be computed and applied to these parts, and as a 
result, the relative error of estimates can be reduced.
Keywords: axle load-based estimation, public transport, Wi-Fi frame monitoring.

1 INTRODUCTION
The purpose of a public transport system can be viewed from different aspects. The most 
important ones stated are that it should help people change stops quickly, reduce car traf-
fic and reduce pollutant emissions. Going deeper, the quality of public transport can be 
improved, if overcrowding on some lines can be reduced or when new direct lines are put 
in service. But if the maintainer is trying to cut costs, it may be necessary to reduce the fre-
quency of some lines.

Hence, when the maintainer of the public transport system addresses these key questions, 
the answers can be found by solving lower-level tasks. Many of these tasks are related to 
the statistics that contains information about how many passengers travel from one point to 
another, which line (or lines) of public transport they use and when they travel.

A traditional way of acquiring this information was via a questionnaire, and then the com-
pleted forms were statistically analysed. Another common way for passenger counting is 
when it is done on the vehicles by humans. The problems with the traditional methods are 
that these methods are expensive and so can be used only for short time periods.

Over the past few years, many different methods have been elaborated in different kinds 
of public transport studies (some of them will be briefly described in the next section). We 
also sought to develop and describe a methodology that can be readily used for analysing 
the actual state of a public transport system. We will mention the limitations and also the 
errors of the proposed solutions. Our two basic methods are based on the Wi-Fi traffic and 
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on telemetry. These are not new ideas. However, the novelty is that we describe our analysis 
on these data and data processing in a systematic way and propose some lower-level analysis 
methods to reduce the estimation error further.

     In the following sections, first we will summarize the state-of-the-art of the problem 
counting passengers who travel from one point to another. Then, our data collection methods 
will be described in more detail (data collections of Wi-Fi, telemetry and handcrafted data). 
After we will describe our actual results on the analysis of Wi-Fi packages, compared to 
telemetry-based estimates, from different aspects. The key idea will be, besides extracting 
global relations of the data involved, that if datasets are divided up in some way (daily data 
into between-stops data) and these parts are also analysed, then better results can be obtained. 
Our proposed method gives a reduction in relative error values from 22% to 8%.

2 R ELATED WORK
Modelling the movement of people in a public transport system, measuring a crowd in a 
public square or a road, or measuring the traffic in a city were discussed earlier, and several 
models have been created for handling these tasks. Here, we focus on counting passengers, 
and the methods can be divided into two main parts. 

The first part is when we do not wish to track people. This set of methods can be used for 
counting people on the vehicle, but they cannot be used for computing an origin–destination 
(OD) matrix. In this case, one can use telemetry data, if they are available. From telemetry 
data, the axle load can be used to estimate the load mass, and from this, using a linear regres-
sion model, an estimate can be computed on of how many people are on board [1, 2]. This 
method is more accurate than other estimation methods, such as infrared sensor-based meth-
ods [2]. When infrared sensors are employed, these sensors are typically used at the door for 
sensing the movement and counting the passengers getting on or off. Other state-of-the-art 
methods use cameras and object detection methods to count people [3, 4]. Each method has 
its own special problems, when it is utilized in a real environment. The mass-based passenger 
number estimation cannot handle widely varying values of weights, and when the vehicle is 
moving, the measured weight is noisy. When a camera is used, one problem is that covered 
or hidden people cannot be detected, but people outside a bus can be detected. When multiple 
cameras are used, the same person may be detected by several cameras. 

The second part is when some kind of tracking can be carried out. In this case, the begin-
ning and end points of a journey can be estimated, and after some aggregation, an OD matrix 
can also be computed. People can be tracked, if on-board camera systems are used [5], or 
something that belongs to some passengers and transmits a signal which can be tracked. If the 
transport system uses smart cards, these can be used for counting of passengers [6]. Another 
approach is the Wi-Fi- or Bluetooth-based tracking [7-11]. In the London Underground, an 
enormous amount of Wi-Fi data was collected to analyse the public transport [12]. Also in the 
London Underground in another project, the accelerometer data patterns collected by phones 
were investigated to identify journeys [13].

From these various approaches, here we will focus on Wi-Fi package measurement-based 
solutions, which may also have some drawbacks in the long term. It is expected that track-
ing devices with Wi-Fi capabilities will be harder or impossible in a couple of years because 
MAC address randomization will become commonplace [14, 15]. So in the next decade, 
many other solutions will be preferred for these kinds of tasks. In the SASMob project, which 
seeks to make the public transport system smarter and improve the quality, we will also do 
experiments by applying the above-mentioned alternative techniques (e.g. object detection 
and tracking-based ones).
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3 COLL ECTING DATA
We have three different data sources:

The ‘Data 1’ data were collected by humans and they contain the passenger counts on a 
trolley bus on a specific date (from 18 April 2018 04:30:10) for 16 hours, including the num-
bers of those getting on or off at each station.

The ‘Data 2’ data were taken on the same trolley bus on the same day and the time interval 
of Data 1. The trolley has a telemetry system (type: SKODA electric control system, ATM 
data recorder, http://www.atmavio.pl/en/rail-vehicles/user-list/). The data of this telemetry 
system contain, for example, the three axle loads, velocity, GPS data and door state indicators 
(open-closed) measured per second. 

The ‘Data 3’ data were collected for 15 days on the same trolley bus, using a Wi-Fi router 
(type: MikroTIK LtAP mini LTE) in monitoring mode. ‘Data 2’ are also available for this 
time period. These data were collected from different routes depending of the trolleys bus 
schedule.

‘Data 1’ and ‘Data 2’ need no further explanation, but the ‘Data 3’ Wi-Fi database needs 
to be described in more detail. Data were acquired by a hardware set-up which contained a 
mini-PC (Raspberry pi 3+), a Wi-Fi router mentioned earlier and a GSM module (for upload-
ing the measured data from time to time). When the Raspberry booted, the Wi-Fi router was 
set to monitoring mode, and tshark was run to log all the Wi-Fi data with a type of Probe 
Request packets to a file. Only channel 1 (2,412 MHz) was monitored by the router because 
the Wi-Fi capable devices send probe requests on each channel [16]. The logs of course 
contained the timestamps, MAC addresses (they were hashed for privacy) and RSSI (signal 
strength).

4  PREPROCESSING THE DATA
Firstly we analysed the relation between the manual passenger counts (‘Data 1’), and the axle 
load data (from ‘Data 2’). As a linear relation is expected [1], a linear regression model was 
applied. From this, we got an estimation of the load, when the vehicle was empty, and after 
an optimal multiplier was calculated to get the number of passengers, when the total mass 
was known. However, when the trolley bus is moving, the measured axle weights are very 
noisy, for various reasons, such as the road surface and acceleration (see Fig. 1). So some data 
aggregation is needed for a more precise estimation.

When the Wi-Fi frames are processed, there is much cleaning work and pre-processing 
to do. Many packets or frames may have come from the surrounding areas and not from the 
devices in the trolley bus, and these have to be filtered out. In the section ‘Data cleaning’, we 
describe what is needed to filter the data efficiently.

Table 1: �T hree kinds of data were collected. Firstly, telemetry and manual passenger counts 
are compared (first row), then the relation between telemetry and Wi-Fi data are 
analysed (second row).

Data 1 Data 2 Data 3

Manual passenger counting, 
16 hours 

Telemetry data, 16 hours long

Telemetry data, 15 days long Wi-Fi data, 15 days long
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4.1 D ata cleaning and pre-processing

We use different cleaning and pre-processing methods for the telemetry data and for the 
Wi-Fi collection. 

From the telemetry data available, we just use the axle loads, timestamp, velocity, GPS 
and door state data. All these measurements are available every second. The first step in the 
pre-processing is that we need to know when the vehicle stops at a stop. For this, we use the 
velocity and the door state. The following algorithm is used: the bus is at a stop from time 
t0 to t1, if between these times the velocity is 0, and when at least one door is opened. The 
state of the door is useful for deciding whether the vehicle is standing at a stop and not at a 
traffic light. Between two stops the number of passengers will not change, but the axle loads 
can vary greatly. Some strategies were tried to estimate the real weight of the trolley between 
stops. First, one can use the weight measured at the beginning or at the end of a stop. Another 
way is to aggregate in some way the measurements between stops, like computing a median 
value. From our experiments, we found that when the median value was used as an estimator, 
the correlation was the largest between the estimated passenger count and the gold standard 
manual count. So after the first phase, we have the median values for estimation. In the next 
part, we define the line number and the direction of the trolley bus and the stop identifiers 
for each stop. For this, for each time interval at a stop, a median GPS latitude and longitude 
are calculated, and from an available list, the identifiers (stop names) are defined. A list of 
lines with terminal stops is also available, so combining the information the concrete line and 
direction can be assigned. 

For the Wi-Fi data cleaning, the whole dataset, which contains the timestamp, MAC 
address and RSSI is sorted by MAC. Then, iterating over all the MACs, ‘MAC trips’ are 
determined by connected timestamps. It is required because any device with a given MAC 
may be on a vehicle several times a day. The ‘MAC trips’ determination method finishes one 
trip and begins a new one, if the time difference between consecutive timestamps is larger 
than a threshold (for this we used 30 min, which is greater than the maximum travel time 
of the trolley on one line in one direction). Then, ‘MAC trips’ are filtered. If the distance 
between the beginning and the end point of a trip (computed from GPS coordinates) is below 
a threshold (here 200 m, which is greater than the range of Wi-Fi), then this trip is deleted 
because we think that this was a signal from the neighbourhood. If the time duration of a trip 

Figure 1: T he raw signal of an axle load, in time. 
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is larger than a threshold (here 60 min), then this trip is also eliminated because these Wi-Fi 
signals were collected from a device that is permanently on the trolley bus. As the stops are 
also determined beforehand, another filter is applied too: if a trip does not contain at least two 
stops, then the trip is eliminated. We have to notice here that the signals from the randomized 
WIFI devices will be lost during this procedure.

4.2 T elemetry data statistics

The following part describes the correlation analysis and the linear regression analysis 
between gold standard passenger counts and those estimated from axle loads. The method is 
based on [1]. We use here Data 1 and Data 2 with the same time period of measurements. The 
telemetry dataset was cleaned, pre-processed and filtered just as described earlier.

The linear relation between the two datasets is shown in Fig. 2. The Pearson correlation 
coefficient between the two datasets is 0.98. The linear regression model provides a net weight 
estimation of the trolley bus as 20875.0 kg and an average passenger weight of 70.0 kg.  
These values have been included in eqn (1). Namely,

	             weight weight weight count etotal net averageperson passenger= + ⋅ + rrror  

                                                               = + ⋅ +20875 0 70 0. . .count errorpassenger � (1)

We will use this linear relation to estimate the number of passengers based on the total weight, 
and then estimate the absolute and relative mean errors.

The difference between the estimate and the ‘gold standard’ number is defined in eqn (2):

Figure 2:   Linear relation between the gold standard passenger count and the total axle load.
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From this difference, various error measures can be calculated. The standard deviation of this 
difference variable is 2.17, and the mean of this variable was −0.01, so we can neglect the 
mean error bias. Thus, if we suppose that the difference samples are drawn from a normal 
distribution (the Shapiro–Wilk test P-value is 0.66 here), then a 95% confidence interval for 
the error is about , that is, 0.01 ± 2.17 . 1.96, ±4 passengers.

After the parameters of the linear relation are known, for any route of the trolley bus, the 
between-stops weights can be determined, the passenger counts can be estimated and the 
computed data can be visualized as like in the following chart showing the passenger counts 
on the same line and direction at different times (Fig. 3).

5  WI-FI DATA ANALYSIS
The tracking of Wi-Fi devices is one way of getting an estimate of an OD matrix. The number 
of passengers can also be estimated, even if there are no axle load data available. However, 
this kind of passenger count estimation does not appear to be so accurate, but it can still be 
used, if no further data are available.

In this section, we investigate the precision of measurements in our given environment. 
This description will also show how one can recalibrate the computation, if a key part of the 
system is modified. Here, we will calibrate the Wi-Fi-based passenger count estimation using 
the previously described axle load-based estimation as the gold standard, as we do not have 
manually counted passenger numbers.

After cleaning, we have MAC trips from the public transport vehicle and these MACs are 
not randomized ones. Using GPS coordinates and timestamp data of stops, we can easily 
estimate from and up till which stop the MAC address was logged. Then, we can calculate 
between two stops how many passengers were travelling. The number of passengers get-
ting on or off can be computed in parallel. Moreover, a matrix can be filled, after the lines, 

Figure 3: � Passenger count computed for the same line and direction at different times. The 
horizontal axis shows the names of trolley bus stops.
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direction and stop names have been identified. This is the OD matrix for a line and direction 
and a time interval.

5.1 T he sources of Wi-Fi-based estimation error

The main reasons for Wi-Fi-based estimation errors are:

-	 The time intervals between the consecutive frames may be big,

-	 It is more and more common for a MAC address to be randomized (for privacy),

-	 There is no known relation between the number of passengers and the number of active 
devices present.

5.2 T ime durations between consecutive probe requests

Several studies [14] indicate that the probe requests are sent in various channels in a very 
short time, but between these ‘bursts’, a lot of time can pass. We compiled some statistics on 
the duration between these ‘bursts’ (here, we defined a burst such that the duration between 
the consecutive frames of probe requests is less than 1 second). Figure 4 shows an example 
of the time differences between consecutive timestamps of frames.

We computed some statistics of time differences between consecutive ‘bursts’. The average 
of time durations between ‘bursts’ is 82.8 sec. This value means that the estimates of getting 
on and off will be uncertain, and they can differ from the given place with one or more stops 
depending on the travelling time.

5.3 R andomized MAC addresses

From the MAC trips collected in a real scenario, one can determine how many MACs are 
assigned trips, but one cannot determine the ratio of devices which randomize their MAC 
address as these signals cannot be differentiated from the signals from the signals coming 
from the neighbourhood. In addition, the result of the linear regression in the sections later 
tells us that about 30% of the total passenger count can be detected by non-randomized Wi-Fi 
probe requests.

Figure 4: A n example of the time durations between consecutive probe requests.
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5.4 D ata used in our estimations

A set of 15 whole-day data from Data 3 is examined here. For each day, a linear regression 
model was applied between the Wi-Fi-based device count and the axle load-based passenger 
count estimation. The mean of the correlations was 0.8 with a standard deviation of 0.05. The 
mean slope of linear regression was 0.3 with a standard deviation of 0.03. The linear relation 
between the two data is shown in Fig. 5.

The aim here was to learn the behaviour of errors when estimations are averaged for many 
occurrences of the same route. For this, a route identification process is the first step. Stop 
identification information was assigned automatically (using GPS coordinates), with the 
name of that stop, the line number and direction. Then a line and direction (‘Line 8’ from 
‘Makkosház’) was chosen for further analysis (over 15 days the trolley bus travelled on 8 
different routes, and from these routes, the chosen one was the most frequent in the schedule 
of the trolley). It turned out that our trolley bus made 90 full trips on Line 8 in these 15 days. 
We analysed these 90 trips further and will present the results later.

5.5 T he relative error as a function of the passenger count

We investigated the relative error of the Wi-Fi-based count estimates after the linear regres-
sion was applied (see Fig. 6). This shows the decreasing relative error, if more passengers are 
on the vehicle, and the absolute error is not increasing linearly with the axle-based passenger 
count. The relative error computed here is defined in eqn (3). Here, we made bins of uniform 
intervals (number of passengers 5–9, 10–14 and so on) and did not take into account the first 
(0–4) interval for the relative error computation because it may be high and dividing by zero 
is also a problem.

			         

E bin
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Figure 5: �L eft: The scatter plot of the axle load-based passenger count and Wi-Fi-based  
device count. Right: The parallel plot of a one-day Wi-Fi-based device count 
set and axle load-based passenger count set. On this particular day, the Pearson 
correlation coefficient was 0.86, the intercept was −0.48 and the slope was 0.32.
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5.6 A  detailed analysis on between stops statistics

Error statistics were calculated on passenger count estimates between specific consecutive 
stops, and some surprising results were obtained. We examined for each stop-to-stop interval 
the deviation between the average of Wi-Fi-based passenger count estimates and the average 
of the axle load-based estimates. We used the 90 full trips defined earlier.

One might think that both of these averages should be around the average of the hypotheti-
cal true passenger counts travelling between two specific stops and the error would decrease 
if the size of the sample were larger. However, the results show something else: the difference 
between two estimation averages (the Wi-Fi-based and the axle load-based) is significant in 
our sample. To demonstrate this, first we show a scatter plot for two stop-to-stop intervals of 
a trolley bus line (Fig. 7).

For the t-test for significance, we have the null hypothesis that the mean of the difference 
between the Wi-Fi-based estimate and the axle load-based one is zero. For the two stop-to-stop 
intervals on the scatter, we find that the P-values are 3e-4 and 4e-10 for ‘Ortutay utca’ and 
‘Dugonics tér’ begin stops. This means that these differences are significant.

Based on the previous observation, we propose a correction for between stop estimates. 
First, on a part (a half) of the full data, a linear regression is applied, then this regression can 
be applied on the rest of the data to reduce the estimation error.

To evaluate the proposed correction method, we used a modified cross-validation tech-
nique because the results using standard N-fold cross-validation technique might be statisti-
cally unstable since the number of samples is very low. For example, if we use 10-fold cross-
validation, then each test set would contain just 9 examples. The steps of evaluation used here 
are the following:

•	 Repeat the following 10 times:

°	 Shuffle the examples randomly, and halve it to train and test sets

°	 On the train set, compute the parameters of the linear regression

°	 On the test set, apply the linear regression and compute error measures before and after 
applying this regression

•	 After collecting the error measures in the loop, compute error statistics

Figure 6: �T he relative percentage error of passenger count estimates as a function of the 
number of passengers. 
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The averaged relative error measures were collected for nine different stop-to-stop inter-
vals and are listed in Table 2. These relative errors are computed on the average estimated 
passenger counts.

The results shown in Table 2 indicate that the relative error measures can be reduced if a 
linear correction is applied on the estimated value.

5.7 C omparison of results

In the literature, we did not find any article that contained relative error computations for the 
Wi-Fi-based estimates; hence, we cannot compare our results with those of others. Our pro-
posed method cuts the relative error computed on-average passenger counts from an average 
of 22% to an average of 8.2%. We also have results on the correlations between axle load-
based estimates and valid passenger counts, and Wi-Fi-based estimates and a gold standard 
passenger count (see Sections 4.2 and 5.4).  In section 4.2 there is the correlation value 0.98 
for the weight data and passenger count, in 5.4 a correlation value of 0.8 for the wifi and pass. 
count. Table 3 provides a comparison.

6 CONCLUSIONS  AND FUTURE WORK
In this study, we addressed the problems of estimating passenger counts in two different 
ways. After constructing linear models and estimating absolute and relative errors, we found 
that the relative error of the Wi-Fi-based estimation can be markedly reduced if data sets are 
processed properly. When a daily Wi-Fi analysis is split into between-stops parts, a linear 
correction method can be applied to these parts, and as a result, the relative errors can be 
reduced.

Figure 7: �T he scatter plot of estimates for specific stop-to-stop intervals. The linear regression 
lines have also been plotted.
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In the future, we plan to investigate several issues. Firstly, the reason for the shifts between 
the two kinds of means (measuring the same thing) when the data set is restricted to a stop-to-
stop set should be ascertained. Secondly, we need to examine other ways of how Wi-Fi MAC 
addresses can be divided into two categories, that is, whether a device with a MAC was on a 
trolley bus (or a vehicle) or not.
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