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AbSTRACT
This paper presents the simultaneous cost, standard sizes and rounded dimension optimization of a 
 cantilever roof structure. Since the standard and rounded dimensions are proposed to be handled explic-
itly in the discrete type of the optimization, the mixed-integer non-linear programming (MINlP) is 
applied. The structure is built from the standard hot rolled steel I sections for columns, beams and struts, 
and from the reinforced concrete bases. The MINlP optimization model of the cantilever roof struc-
ture is developed. The model comprises the objective function of the structure’s self-manufacturing 
costs and the design, resistance and dimensioning (in)equality constraints. The latter are defined in 
accordance with the Eurocode 2, 3 and 7 specifications. The modified outer-approximation/equality-
relaxation (OA/ER) algorithm is used. The MINlP optimization of a cantilever roof structure for a 
small football stadium near the city of Maribor in Slovenia is presented at the end of the paper. The 
obtained optimal result includes the minimal production costs of the structure, the optimal standard 
sections of steel elements and the optimal rounded dimensions of the concrete bases.
Keywords: cost optimization, discrete optimization, mixed-integer non-linear programming, MINLP, 
roof structure.

1 INTRODUCTION
Recently, many different optimization approaches for structural optimization have been pro-
posed. Cicconi et al. [1] have introduced virtual prototyping tools and the genetic algorithm to 
reduce the weight and cost of steel structures. kalanta et al. [2] have reported the discrete 
optimization of steel bar structures using the branch and bound method. Hasançeb [3] has 
introduced the sizing optimization of steel frames by the evolution strategy method. Mela and 
Heinisuo [4] have applied the particle swarm optimization method for the weight minimization 
and the minimum cost optimization of welded high strength steel beams. Zhang et al. [5] have 
reported the optimization of long-span portal frame under dynamic wind loads using a surro-
gate-assisted evolutionary algorithm and Van Mellaert et al. [6] have proposed the discrete 
sizing optimization of frame structures using the mixed-integer linear programing (MIlP).

This paper examines the simultaneous cost, standard sizes and rounded dimension optimi-
zation of a cantilever roof structure. This type of the structure can be used for car parking 
roofs, small bus stations, small stadiums, etc. In order to obtain a real roof structure, standard 
and rounded dimensions are proposed to be handled explicitly in the model that lead to per-
form the discrete type of the optimization. The optimization is calculated using the 
mixed-integer non-linear programming approach (MINlP). The MINlP is a combined con-
tinuous-discrete optimization method. It performs the continuous optimization of parameters 
(production costs, masses, internal forces, deflections), the discrete optimization of discrete 
sizes (the standard steel sections of columns, beams and struts) as well as the rounded dimen-
sion optimization of the reinforced concrete bases (the length and width of the bases are 
automatically rounded on whole 10 cm).

The MINlP optimization model of the cantilever roof structure is developed. The objec-
tive function of the self-manufacturing costs of the structure is defined and subjected to the 
design, structural analysis and dimensioning constraints. The dimensioning constraints are 
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defined in accordance with Eurocode 3 [7] for steel, Eurocode 2 [8] for concrete and  Eurocode 
7 [9] for geotechnics. The ultimate and serviceability limit state conditions are in this way 
satisfied through the optimization.

This paper reports the approach for solving the MINlP optimization problem using the 
modified outer-approximation/equality-relaxation (OA/ER) algorithm, see kravanja and 
Grossmann [10], and kravanja et al. [11–12]. A single-phase MINlP optimization is pro-
posed. The calculation begins with the continuous optimization of the structure. The first 
result is used as the starting point for the further second step, where the discrete optimization 
of standard sizes and rounded dimensions was executed.

2 M I N l P OPTIMIZATION
The optimization problem of the roof structure is non-convex and non-linear. Since handling 
the discrete alternatives of the structure requires executing the discrete type of the optimiza-
tion, the mixed-integer non-linear programming (MINlP) is applied. The general MINlP 
optimization problem is defined as follows:

min   z = cTy + f(x)

subjected to:

 g(x)≤0  (MINlP)

By + Cx ≤ b

x x x x xlO UP∈ ∈ ≤ ≤{ }X = Rn :

y
m∈ { }Y = 0 1,

In the model formulation, x is a vector of continuous variables and y represents a vector 
of discrete mostly binary 0–1 variables. While cTy represents a linear fixed item, f(x) stands 
for a dimension dependent item in the objective function z. The latter is subjected to equality 
and inequality constraints g(x) and to mixed linear (in)equality constraints By+Cx ≤ b. 
Functions z and g(x) must be continuous and differentiable. At least one of them must be 
non-linear.

The MINlP optimization of the cantilever roof structure is calculated by the MINlP com-
puter program MIPSYN [13] and [14]. The modified OA/ER algorithm and the single-phase 
MINlP optimization are applied. GAMS/CONOPT2 (generalized reduced-gradient method) 
by Drudd [15] is used to solve NlP problems, whilst GAMS/CPlEX [16] (branch and 
bound) is used to solve MIlP problems.

The OA/ER algorithm contains of solving an alternative sequence of non-linear program-
ming optimization subproblems (NlP) and mixed-integer linear programming master 
problems (MIlP), Fig. 1. The first corresponds to the optimization of parameters for a build-
ing structure with a fixed standard dimensions, standard materials and rounded dimensions 
yields an upper bound to the objective to be minimized. The last mentioned involve a global 
linear approximation to the superstructure of alternatives in which a new standard sizes, 
standard materials and rounded dimensions are identified. When the problem is convex the 
search is terminated when the predicted lower bound exceeds the upper bound, otherwise it 
is terminated when the NlP solution can be improved no more.
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Figure 1:   MINlP optimization program architecture.

3 OPTIMIZATION MODEl CANROOF
The cantilever roof structure is constructed from columns, beams, struts and bases, see  
Fig. 2. The columns, beams and struts are proposed to be built up from the standard hot 
rolled steel I section, while the bases are made from the reinforced concrete. Purlins which 
are mutually connected onto cantilever frames are not included in the optimization; the 
same holds with the vertical and horizontal bracing systems. The roof structure is defined 
as an MINlP superstructure, composed of various discrete alternatives, i.e. different stand-
ard sections for the steel elements and different rounded dimension alternatives for the 
concrete bases.

According to the above MINlP model formulation, the MINlP optimization model 
 CANROOF (CANtilever ROOF structure) was developed. The model was modelled in 
GAMS (General Algebraic Modelling System) [17] environment. The model is consisted 
from input data, continuous and discrete binary variables, the structure’s cost objective func-
tion, and from structural analysis constraints and logical constraints.

The input data comprise the sets for defining the discrete alternatives of standard dimen-
sions and rounded dimensions, and scalars and parameters. Defined are s, s∈S, standard 
cross-section alternatives for columns, beams and struts separately and r, r∈R, rounded 
dimension alternatives for length and width of the concrete base.

The scalars in input data contain the global geometry of the cantilever roof: the length of 
the beam Lcr, the length of the strut Ls, the height of the column hc, the over height of the frame 
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beam f and the height of the reinforced concrete base hab, the elastic modulus of the steel E, 
the shear modulus of the steel G, the yield strength of the steel fy the density of the steel ρs, 
the density of the reinforced concrete ρz, the variable load (snow s, the vertical wind wv, the 
horizontal wind wh), the partial safety factor for the permanent load γg (1.35), the partial 
safety factor for the variable load γq (1.50), the resistance partial safety factors γM0 (1.0) and 
γM1 (1.0), the material and erection cost (price) of the concrete Cc, the material cost of the 
structural steel Cs, the material cost of the reinforcing steel Cr, the anti-corrosion resistant 
painting cost Cac, the cost per steel connection Csc, the construction pit (incl. excavation, 

removal, planning) Cp, the panelling cost (incl. material and erection) Cpl, etc.
The parameters in input data include the vectors of different discrete alternative values of 

the standard dimensions qs (standard sizes of IPE and HEA sections) as well as the discrete 
alternative values of the rounded dimensions qr (the length and width of the concrete base 
were proposed as being rounded up to whole 10 cm).

The continuous variables contain the self-manufacturing costs of the cantilever roof struc-
ture COSTS, the overall breadths of the column, beam and strut b; the cross-sectional heights 
of the column, beam and strut h; the flange thicknesses of the column, beam and strut tf,; the 
web thicknesses of the column, beam and strut tw; the cross-sections of the column, beam and 
strut A; the elastic section modules of the column and beam W; the design bending moments 
in the column and beam MEd, the design axial forces in the column, beam and strut NEd; the 
design shear forces in the column and beam VEd, the vertical deflection of the cantilever roof 
structure δ, the length of the base L and the width of the base bb.

The binary variables comprise binary variables ys for s, s∈S, standard cross-section alter-
natives of columns, beams and struts separately, and binary variables yr for r, r∈R, rounded 
dimension alternatives of length and width of the concrete base.

Figure 2:   Cantilever roof structure.
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The cost objective function represents the self-manufacturing costs of the material, 
anti-corrosion resistant painting, panelling, connections and assembling, see:

min: COST = Cc·Vc + Cs·ρs·Vs + Cr·ρs·Vr + Cac·Aac + Csc + 0.15·Cs·ρs·Vs + Cp·Vp + Cpl·Apl (1)

where COST defines the self-manufacturing costs of the cantilever roof structure; Cc, Cs, Cr, 
Cac, Csc, Cp and Cpl are the prices of the concrete and steel materials, of the anti-corrosion 
resistant painting, of the steel connections as well as the prices of the construction pit and 
of the panelling, see Table 1. Vc, Vs, Vr and Vp represent the volumes of the concrete base, 
the steel I sections, the reinforcing steel and of the excavation, respectively; ρs is the unit 
mass of the steel; Aac is the exposed area of the steel members; and Apl is the area of the 
panelling. Assembling costs of the steel structure is defined to be 15% of the calculated 
material costs.

The structural analysis constraints include the calculation of internal forces and deflections 
according to force method and the constraints for dimensioning. Only the main constraints 
are presented in the paper. The ultimate limit state constraints of structural elements (the 
Eurocode specifications) include eqns (2)–(11) and the serviceability limit state constraint 
comprise eqn (12).

The axial resistances of the steel members are checked by eqn (2), where NEd stands for the 
design axial force, A represents the cross-section area of the steel member, fy is the yield 
strength of the steel and γM0 is the resistance partial safety factor.

 
N

A f
Ed

y

M
≤

⋅
g 0  

(2)

The shear resistances of the members are verified by eqn (3), where VEd denotes the design 
shear force and Av is the effective shear area of the cross-section.
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The bending moment resistances of the members are determined by eqn (4). MEd repre-
sents the design bending moment and W is the section modulus of the steel member.
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The compression/buckling resistances are defined by eqn (5), where c is the reduction 
factor due to the flexural buckling and γM1 is the resistance partial safety coefficient.
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The interaction between the compression and bending moment resistances is defined by 
eqn (6).
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The interaction between the buckling and the lateral–torsional buckling resistances is 
checked by eqn (7), where χLT is the reduction factor due to the lateral–torsional buckling.
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The bearing resistance failure in the ground under the reinforced concrete bases is checked 
by eqn (8). Here, NEd is the vertical design force and MEd is the design bending moment, 
which acts on the concrete base. Ab, L and bb stand for the surface area, length and width of 
the base, respectively. While the surface area is calculated by eqn (9), the section modulus of 
the base Wb is defined by eqn (10).
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The overturning resistance of the reinforced concrete base is defined by eqn (11), where G 
is the self-weight of the reinforced concrete base, Ftot is the total action force (the self-weight 
of the roof structure and the base plus snow plus wind), e is the distance between the  
total force and the point of overturning (the right bottom base edge) and γ is the safety  
factor (γ = 2.5).

 
G
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g

 
(11)

The total vertical deflection δ of the cantilever roof structure is checked by eqn (12), where 
Lcr is the span of the cantilever roof.

 
d ≤

⋅2

200

Lcr

 
(12)

The logical constraints determine the discrete values for standard dimensions dst (of the 
standard steel sections) and the discrete values for rounded dimensions drd (of the concrete 
bases), see eqns (13)–(16). The standard dimensions and rounded dimensions are calculated as 
a scalar product between the vector of discrete alternatives q and the vector of associated binary 
variables y. Only one discrete value is selected for the standard dimension or for the rounded 
dimension, since the sum of the binary variables y has to be equal to 1, see eqn (14) and eqn (16).
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4 NUMERICAl EXAMPlE
The numerical example shows the simultaneous cost, standard and rounded dimension opti-
mization of a steel cantilever roof structure for a small football stadium near the city of 
Maribor, Slovenia. A number of variants of the roof structure were considered and calculated. 
While the optimization of the first variant was already reported by žula and kravanja [18], 
the presented variant includes a bit bigger roof structure than that in [18] (16.5 metres long, 
4.0 m high and 4.6 m wide). The treated steel structure is now 16.5 m long, 4.6 m high and 
6.0 m wide, see Fig. 3.

The structure consists from four equal cantilever frames with the intermediate distances of 
5.5 m, clamped onto four reinforced equal concrete bases. Each reinforced concrete base is 
2.0 m deep, placed behind the existed concrete seat structure. The in-plane length and width 
of the base is treated in the optimization as variables. Steel S 355 and concrete C25/30 were 
used. The structure is exposed to the combined effect of the permanent uniform load (self-
weight) and the uniformly distributed variable load q (snow s=1.25 kN/m2 and wind w=0.25 
kN/m2). The design loads are defined: 1.35·g + 1.50·s + 1.50·0.6·w for the ultimate limit 
states, and 1.00·g + 1.00·s + 1.00·0.6·w for the serviceability limit states.

The MINlP optimization model CANROOF of the structure is applied. The model com-
prises the structure’s cost objective function, for which the material and labour costs (prices) 
are defined and shown in Table 1.

Figure 3:   Global dimensions of the cantilever roof structure.
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The superstructure was generated in which all possible cantilever structure alternatives 
were embedded within a combination between 24 different standard HEA steel sections 
(from HEA 100 to HEA 1000) for the column, 18 different standard IPE steel sections (from 
IPE 80 to IPE 600) for the beam and strut separately, 94 various discrete alternatives for 
rounding up the length of the reinforced concrete base (from 70 cm to 1000 cm) and 94 var-
ious discrete alternatives for rounding up the width of the reinforced concrete base (from 
70 cm to 1000 cm). In this way, the superstructure of alternatives includes 24·18·18·94·94 = 
6.8708736·107 different solutions of the discrete variables.

The single-phase MINlP optimization is applied. The procedure begins with the continuous 
NlP optimization of the structure (the initialization), where the standard and rounded dimen-
sions are temporary relaxed. The optimal structure’s self-manufacturing costs of 20,579 € (for 
all four cantilever frames) are obtained using the relaxed/continuous standard and rounded 
dimensions, see the 1st NlP in Table 2. This result is used as the starting point for the discrete 
standard and rounded dimension optimization. The convergence of the modified OA/ER algo-
rithm is shown in Table 2. At this level, the binary variables ys of the standard sizes for column, 
beam and strut, and the binary variables yr of the rounded dimensions for length and width of 

Cc Concrete C 25/30 125.0 EUR/m3

Cs Structural steel S 355 1.25 EUR/kg

Cr Reinforcing steel b 500 1.30 EUR/kg

Cac Anti-corrosion resistant painting 20.0 EUR/m2

Csc Steel connection 300.0 EUR

Cp Construction pit 10.0 EUR/m3

Cpl Panelling 5.0 EUR/m2

Table 1: Material and labour costs (prices).

MINLP
Iteration

MINLP
Sub-phase Costs [€]

Cross-section area [cm2]/
Standard steel section

Base area 
[m2]

Column Beam Strut Ab=L∙bb

Continuous optimization

1. 1. NlP 20,579 174.99 55.80 37.09 8.70

Discrete standard and rounded dimension optimization

2.
1. MIlP 21,077 178.00/ 62.60/ 45.90/ 8.80

2. NlP 21,077 HEA 450 IPE 330 IPE 270 4.40·2.00

3.
2. MIlP 20,924 178.00/ 62.60/ 33.40/ 8.80

3. NLP 20,924 HEA 450 IPE 330 IPE 220 4.40∙2.00

4.
3. MIlP 21,345 178.00/ 62.60/ 45.90/ 9.03

4. NlP 21,345 HEA 450 IPE 330 IPE 270 4.30·2.10

Table 2: Convergence of the modified OA/ER algorithm.
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the base are included in the optimization. The same holds with the logical constraints for dis-
crete decisions. The final structure’s minimal self-manufacturing costs of 20,924 € is obtained 
at the 3rd main MINlP iteration (the selling price is approx. 2.5 times higher than these pro-
duction costs). The optimal solution also contains the calculated optimal standard sections of 
column (HEA 450), beam (IPE 330), strut (IPE 220) and the calculated rounded dimensions of 
the reinforced concrete base, i.e. the length of 4.40 m and the width of 2.00 m, see Fig. 4.

5 CONClUSIONS
The paper deals with the cost, standard sizes and rounded dimension optimization of a 
 cantilever roof structure, which can be made for car parking roofs, small bus stations, small 
stadiums, etc. The discrete optimization of the structure is performed with the mixed-integer 
non-linear programming, MINlP. The MINlP optimization model is developed. The cost 
objective function of the structure is subjected to the structural analysis and dimensioning 
constraints. The modified OA/ER algorithm and the MINlP computer package MIPSYN are 
applied. The MINlP optimization of the cantilever roof structure for a small football stadium 
is presented at the end of the paper. The optimal solution comprises the minimal self-manu-
facturing costs of the structure, standard sections of steel elements and rounded dimensions 
of the concrete bases.

Such applications of different optimization techniques in the engineering practice repre-
sent a novel and advantageous manner. The optimized self-manufacturing costs of the 
structure in the paper was found to be more than 20% lower than the costs of the structure, 
obtained by the classical structural analysis. The example clearly shows the efficiency of the 
proposed MINlP optimization approach.
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