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ABSTRACT
The subject matter of this paper involves the examination of the process of liquid drop formation at 
the outlet of a nozzle. A theoretical model of the formation of liquid droplet has been developed. The 
model is based on a recursive equation. Solution of this equation is obtained by the solution set, which 
is similar to the process of liquid droplets formation. The objective is to demonstrate that a recursive 
theoretical model can reproduce the chaotic behavior of physical phenomena, which is the formation of 
liquid droplets. In this paper, it is the assessment of the non-stationary characteristics in the process of 
drop formation. The potential for describing it in terms of principles familiar from deterministic chaos 
is presented. The paper contains the results of experiments which indicate that chaotic phenomena occur 
during the formation of liquid drops. The results of the research are elaborated and presented in the form 
of attractors and power spectrum diagrams. The ranges of the parameters are determined for which the 
time intervals between the successive drops tend to be non-stationary. Their presentation in the phase 
space has revealed the occurrence of chaotic phenomena. It was concluded that numerical calculations 
and the results gained from experiment are comparable. Consequently, it was indicated that relatively 
simple mathematical model can be used for simulation of the states of actual physical processes.
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1 INTRODUCTION
Formation of the liquid drop occurs in many industrial processes such as the condenser and 
scrubbers. The process of liquid drop formation has an important effect on the duration of the 
drying process and removal of moisture from gases. Recently, a lot of research has been con-
cerned with condensing water which is included in process gases due to an increase in the 
efficiency of boilers in which biomass is used. The processes of liquid drop formation in 
condensing apparatus often display non-stationary characteristics. Therefore, this paper deals 
with the question of non-stationary characteristics in the process of liquid drop formation and 
the potential for describing it by the use of principles known from deterministic chaos.

The phenomenon of deterministic chaos has been a familiar one for years. A hundred years 
ago, Henri Poincare and his team noted that systems consisting of mutually dependent ele-
ments can behave in an unpredictable way under certain circumstances. In recent years, this 
observation was extended to include a number of physical and chemical issues in which 
chaotic structures are formed from organized structures and vice versa [1,2]. Additionally, a 
variety of issues are also found in the area of two-phase flows in which deterministic chaos is 
known to occur [3]. This paper is aimed at the presentation of issues associated with the 
occurrence of chaos in the process of liquid drop formation.
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The occurrence of chaos in flows was the subject matter of many papers; however, this phe-
nomenon is so complicated that it has not been dealt with sufficiently. Mathematicians from 
Santa Cruz [4] when conducting research into chaos found its occurrence during the separa-
tion of liquid drops. Another paper [5] contains a proposition of a mathematical description of 
the occurrence of chaos in two-phase flow. The description in it focuses on the application of 
fractal calculation techniques in the description of dissipative horizontal water flow.

This paper includes results of experimental studies performed by the authors and concerned 
with the occurrence of chaos phenomenon in the process of liquid drop formation. The exper-
iments involved the measurement of time intervals between the successively separating drops 
from a nozzle outlet and the subsequent identification of the loss of stability in this process. 
The results of the measurements are presented in the form of an attractor and calculations of 
the basic parameters, which describe how the chaos phenomenon is performed. Additionally, 
the ranges of the value of Reynolds number are identified for which the phenomenon of drop 
separation has chaotic characteristics. The testing was aimed to confirm the occurrence of 
deterministic chaos. The methodology was largely based on the fractal calculation techniques.

This paper attempts also to describe the process of the liquid droplets formation with rela-
tively simple recursive equations that allow simulation of chaotic behavior of the droplet 
formation process.

2 MATHEMATICAL MODEL
The model equation that describes the investigated phenomenon is based on the balance of 
force acting on a drop during its formation on the nozzle outlet (Fig. 1). In accordance with 
the d`Alembert principle, the equation for the balance of the forces takes the form:

 
F F Fb g= − s  (1)

In eqn (1) the particular forces can be expressed in the following way:
gravity force

 
F r gg = ⋅ ⋅ ⋅ ⋅4

3
3p r  (2)

surface tension force

 F Rs p s= ⋅ ⋅ ⋅2  (3)

inertia force
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where r is the instantaneous drop radius (m), r the liquid density (kg/m3), g the gravita-
tional acceleration (m/s2), R the nozzle radius (m), s the coefficient of surface tension (N/m) 
and v the displacement velocity of the specific gravity of a drop (m/s).

By calculating the volume flow ratio Q as a function of the volume V of a drop, the follow-
ing formula is derived:
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After differentiation of v in time, we obtain
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By integrating the above relations into eqn (8), we obtain the following transformed differ-
ential equation:
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As a result of transforming eqn (14) into a finite differential form, we obtain a formula 
which can be used for the iterative calculation of the radius of a separating drop:

 
r r

R
M g M ri i i+ = +

⋅ ⋅
⋅ ⋅ − ⋅ ⋅ ⋅ ⋅1

33 2p
r

s p  (8)

where M=Dt/Q.
The simulation of chaos involves adapting the value of parameter M in such a way that eqn 

(8) does not any longer keep a singular, stable solution. The results of numerical calculations 
are presented in Fig. 2. For low values of parameter M (Fig. 2a) we obtain a stable solution 
of eqn (8). This state corresponds to the formation of drops without the chaos. Figure 2b 
illustrates the beginning of the loss of stability in solving this equation. During the initial 
phase of the iteration process, it is possible to note oscillations, and after that the solution is 
stationary. Figure 2c shows the oscillations increase until a stable generation of two solutions 
is achieved. This represents a case when typical for chaos bifurcations start to appear. After a 
small increase in the value of parameter M, we have to do with multiplication of the number 
of solutions (Fig. 2d). The further increase in the value of parameter M results in an abrupt 
increase in the number of solutions of eqn (8).

Figure 1: Forces acting on a drop.
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Figure 2:  Results of numerical calculation of the radius of the separating drop for the value 
of parameter M: (a) M = 0.1, (b) M = 1, (c) M = 1.4, (d) M = 1.6 and (e) M = 1.8

3 EXPERIMENTAL SETUP
Several series of experiments were undertaken with the aim of measuring the time intervals 
between the successive water drops separating from a nozzle outlet. The diagram of the 
experimental setup is presented in Fig. 3. A tank 1 was installed in a way which ensured 
free liquid flow along a f 30-mm pipe. Inside the tank is installed a temperature sensor to 
measure the liquid temperature. A regulation valve 2 was installed at the end of the pipe and 
was used for the control of the flow rate of the liquid out of the tank. The nozzle at which 
liquid drops are formed was installed at the end of the pipe. The nozzle was made of brass. 
At a certain distance from the nozzle, a photocell was installed in order to register the succes-
sive instances of liquid drop separation and it was coupled with a computer measuring system. 
The measurement of flow rate was performed by means of the gravimetric method by the use 
of measuring the mass of tank 3. 

The value of the liquid mass flow rate m was derived from the relation:

 
m

m

t
=

D
D

 (9)
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where Dm is the mass of liquid accumulated in the tank during measurement (kg), and Dt 
the duration of measurement (s). 

Following series of measurements were undertaken for various values of the liquid flow 
rate. Sequence of intervals between the separating drops was measured for a given value of 
the liquid flow rate (for 3000–5000 drops). Subsequently, the liquid flow rate was increased 
and the measurements were repeated. Thus, data series for various values of the liquid flow 
rate were obtained from the testing.

4 EXPERIMENTAL RESULTS
An analysis of the successive expressions in series of time intervals between separating liquid 
drops was undertaken in respect to selected values of the flow rate (Fig. 4). The vertical axis 
indicates the mean time taken by the successive drops to form. The horizontal axis marks the 
successive numbers of drops. In order to clearly illustrate the time change, the discreet points 
marking time intervals are joined by sections. Along with an increase in liquid flow rate, the 
time taken for the liquid drops to form increases. Also, the irregularity of the drop formation 
increases as well. In Fig. 4, the process of drop formation as a function of Reynolds number 
is shown. The Reynolds numbers were derived from the relation:

 
Re ==

⋅
⋅ ⋅
4 m

Dp h  (10)

where h is the liquid viscosity (Pa∙s) and D the nozzle diameter (D = 0.005 m),
The analysis of time series in which liquid drops are formed for an increasing liquid stream 

discharge from a nozzle is used to capture the mechanism behind the origin of chaos. Figure 
4a and b presents a series of the time intervals between the drops for a flow rate in which 
chaos does not yet occur. All of the values are contained close to the middle value. An increase 
in the liquid flow rate results in an increase in the intensity in which drops separate while a 
constant level of interference is maintained. Figure 4c and d presents critical courses for 
which a transfer is made from a stationary structure to a chaotic one. The formation of regular 

Figure 3: Experimental setup.
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drops is discernible and the times of successive drops are considerably different from the 
mean value. Additionally, their separation times are considerably irregular. According to 
chaos theory, these represent bifurcation points.

The following charts (in Fig. 4e and f) present deterministic chaos. On the basis of the 
course of the expressions in the series, it is difficult to note any regularity. Nevertheless, this 
does not need to mean loss of regularity.

Deterministic chaos is characterized by the occurrence of specific dominating values. 
However, by merely observing time series it is difficult to note any values which are domi-
nant. On the basis of such observations, it is, however, possible to conclude whether there are 
dominant values in a given series, which could potentially indicate the occurrence of a deter-

Figure 4: Values of time intervals, t (ms), between the forming drops for: (a) Re=109.1, (b) 
Re=162.1, (c) Re=203.5, (d) Re=213.3, (e) Re== 221.7 and (f) Re= 226.1.
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mined process [4]. The analysis of power spectrum was based on a discreet Fourier transform 
[6]. On its basis, it was possible to analyze the distribution of numerical values. The range of 
the values in a series was divided into 100 equal parts and subsequently it was possible to 
determine how many samples in a given set are contained in each set.

Figure 5 presents the power spectrum for selected series of samples corresponding to the 
particular values of the Reynolds number. In these charts, n denotes the number of samples 
in a given time interval t.

Figure 5a presents the distribution of a power spectrum for a stable process of liquid drop 
formation. The distribution of drop formation times of drops is similar to a Gaussian curve. 
One can therefore conclude that the discrepancies between the measured times are due to the 
measurement errors. The power spectrum for the flow in the vicinity of the point of stability 
loss is presented in Fig. 5b. It is very similar to the distribution for stationary flows, however, 
asymmetry of the power distribution is observed. For the flow from Fig. 5c and d (for which 
the deterministic chaos is developed), the power spectrum contains a few dominant value 
ranges. This forms evidence in favor of a statement about the process having multidimen-
sional parameters. Along with the increase in the liquid flow rate, more power bands are 
formed, which consequently leads to a complete instability of the system and origin of chaos 
in which none of the process parameters is a dominant one. The above power spectra do not 

Figure 5: Power spectrum for (a) Re=109.1, (b) Re=203.5, (c) Re=226.1 and (d) Re=258.5.
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yield the values of the time intervals between the forming drops, which are the most probable 
for a given flow rate. The occurrence of the dominant times of drop formation therefore indi-
cates the presence of deterministic chaos. As a consequence, it is justified to seek for 
theoretical models, which could generate values that are similar to the ones measured during 
the experiment.

5 METHODS OF CHAOTIC DATA COMPARE
Direct comparison of time series from two non-stationary processes is relatively difficult. 
One of the methods which allows to see the results of the comparison is the data presentation 
in field of phase diagrams in which images are presented in the form of attractors. These 
types of attractors could be described in terms of dimensions used to identify the parameters 
of fractals [5]. Chaos can be unpredictable, which does not, however, mean that is it not deter-
ministic. This means that two identical chaotic systems which are excited by a single signal 
behave in an identical way; nevertheless, it is not possible to predict the state of the system at 
a particular instant in time. By investigating the behavior of complex systems, Tambe and 
Kulkrnt showed [1] when the influence force between mutually dependent elements of a 
system increases and the system undergoes a phase shift from an stationary state into a cha-
otic one. The case is similar with drops. There is no possibility to predict the time interval 
between the successive drops, although it is possible to determine the set of values in which 
it will be found.

An attractor was applied in order to present the data in three-dimensional state space. An 
attractor is a quantity which is dependent on the state of the observed system and characterizes 
a given phenomenon. This technique involves reconstruction of the shape of an attractor on the 
basis of a series of measurements. Such reconstruction has already been the subject of study 
by David Ruelle and Norman Packard [4] and indicates the correctness of the above approach. 
The results of experimental measurements take the form of a time series. It is a series of num-
bers which represent the value of an observed quantity performed at constant time intervals. A 
phenomenon that is observed in this manner is, however, a multidimensional one. Conversely, 
an attractor should represent the dimensions of a phenomenon and, therefore, it needs to be 
multidimensional despite the fact that the observations concern only a single quantity. Due to 
the possibility of presenting results in three dimensions only, the dimensions of an attractor has 
to be limited to such a number of dimensions. In this manner, three-dimensional time series are 
obtained on the basis of a series of an observation involving only a single dimension, in which 
each point has three coordinates (xn; xn‑1; xn‑2). The line in space encircling these points con-
stitutes the typological approximation of the shape of the attractor.

The measurement of non-linear properties of a dynamic system is aimed at reconstruction 
of the properties of an attractor on the basis of a registered signal. For this purpose, a phase 
image is developed on the basis of measurement data for signal x(t), which involves the pres-
entation of data in a d-dimensional space (called immersion space). The measurement data 
form a time series:

 {xn} = {x1, x2, ... , xn} (11)

A curve xd(t) is constructed for an arbitrary immersion dimension d on the basis of exper-
imental data:

 
x t t td ( ) ( ), ( ), ( ),...., ( ( ) ) , , .....,t x t x t x t x t d x x x= + = + −{ } =2 1 1 2 nn d− −{ }1  (12)
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During the measurement of time intervals between the drops, it is possible to register acci-
dental and false values (i.e. ones that are dissimilar from the remaining ones), which result 
from the occurrence of random interference (vibration, noise). In connection with this, 5% of 
data with the highest and lowest values have been rejected from consideration in each series.

The scatter of the values of time intervals between the separating drops is contained a cer-
tain range. The values of the time scatter are dependent on the velocity of the liquid discharge. 
The shape of the attractor is not relative to the constant component but only from the time 
differences between the successive separating drops. Therefore, the constant component was 
deduced from the resulting numerical values and, consequently, the data were reduced to 
numbers in the range 0–1000, in accordance with the formula: 

 
t

t t

t t
i

i
( )

( ) min

max min

=
−
−

⋅1000  (13)

where t(i) is the time interval between successive drops, tmax the maximum value of the 
interval, and tmin the minimum value of the interval.

The attractors for the selected flow rates of the discharged water are presented in Fig. 6. The 
shapes of the attractors gained from the experiments assume regular fractal forms. Figure 6a 
presents an attractor for the liquid flow for which chaos does not already occur. It indicates 
lack of any order and the completely blurred image indicates that no interference is present in 

Figure 6: Attractors for (a) Re = 109.1, (b) Re=203.5, (c) Re== 221.7 and (d) Re= 226.1.
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the form of a white noise. Figure 6b presents attractors in the vicinity of a critical point, that 
is, an attractor which corresponds to the flow rate of liquid from a nozzle for which the struc-
ture is in transit state from a stationary into chaotic one. Figure 6c presents the development of 
chaos. Some form of regularity is discernible, which means deterministic chaos in the system. 
Figure 6d presents an attractor, which represents a typical form for chaotic behavior. The set 
of point in the space forms a regular shape for a highly irregular behavior of the time course. 
The occurrence of chaos in the process of liquid drop formation results from the fact that the 
chaotic behavior forms a set of regular behaviors, while none of them play a dominant role.

Figure 7 shows the results of the unambiguous similarity between the behavior of the the-
oretical model and the experiment for a series of the solutions to eqn (8) for M=1800, an 
attractor was generated. In its shape, this attractor is very similar to the ones gained from the 
experiment as presented in Fig. 7a. The similarity of the attractors in accordance with the 
chaos theory shows that the behaviors of the systems are similar. This confirms the validity 
of the assumptions adopted in the theoretical model. The developed mathematical model well 
represents the parameters of the examined physical phenomenon.

6 CONCLUSIONS
The analysis presented in this paper indicates the occurrence of several fundamental charac-
teristics of deterministic chaos in the process of liquid drop formation. It was observed that 
after exceeding a certain value of liquid flow rate, the process of drop formation changes 
from regular to a chaotic one. After a critical point is exceeded, the power spectrum changes 
from individual bands into broadband, which forms a characteristic feature of chaos. On the 
basis of the observation of this phenomenon, a simple mathematical model was developed, 
which also can be used to reveal chaotic solutions. In this way, it has been proved that even 
simple mathematical model can be applied for the simulation of chaotic behavior of real-life 
processes.
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