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ABSTRACT
Vapor bubbles can be formed in liquids by increasing the temperature over the boiling threshold (evap-
oration) or by reducing the pressure below its vapor pressure threshold (cavitation). The liquid can be 
held in these tensile conditions (metastable states) for a long time without any bubble formation. The 
bubble nucleation is indeed an activated process, in fact a given amount of energy is needed to bring the 
liquid from that local stable condition into a more stable one, where a vapor bubble is formed. Crucial 
question in this field is how to correctly estimate the bubble nucleation rate, i.e. the amount of vapor 
bubbles formed in a given time and in a given volume of liquid, in different thermodynamic conditions. 
Several theoretical models have been proposed, ranging from classical nucleation theory, to density 
functional theory. These theories can give good estimate of the energy barriers but lack of a precise 
estimate of the nucleation rate, especially in complex systems. Molecular dynamics simulations can 
give more precise results, but the computational cost of this technique makes it unfeasible to be applied 
on systems larger than few tenth of nanometers. In this work the approach of fluctuating hydrodynamics 
has been embedded into a continuum diffuse interface modeling of the two-phase fluid. The resulting 
model provides a complete description of both the thermodynamic and fluid dynamic fields enabling 
the description of vapor-liquid phase change through stochastic fluctuations. The continuum model 
has been exploited to investigate the bubble nucleation rate in different metastable conditions. Such 
an approach has a huge impact since it reduces the computational cost and allows to investigate longer 
time scales and larger spatial scales with respect to more conventional techniques.
Keywords: bubble, diffuse interface, fluctuating hydrodynamics, nucleation, thermal fluctuations.

1 INTRODUCTION
At the molecular scale, even in conditions of thermodynamic equilibrium, the fluids do not 
exhibit a deterministic behavior. In fact, going down below the micrometer scale, the effects 
of thermal fluctuations play a dominant role in the dynamics of the system. A suitable descrip-
tion of the fluid dynamic phenomena at mesoscopic scale is then necessary to include the 
effects of thermal fluctuations. Since the pioneering work of Landau and Lifshitz (1958, 
1959) [1] several models, designed to the description of the hydrodynamic fluctuations, have 
been developed in the context of continuum mechanics [2] contributing to the growing field 
of ‘fluctuating hydrodynamics (FH)’. In recent years there has been an exponential increase 
of numerical methods for modeling these effects [3, 4]. These models not only play an impor-
tant role in fluid dynamics, but a deep understanding of these phenomena is necessary for the 
progress of some of the latest nanotechnologies. For instance the modeling of thermal fluctu-
ations is crucial in the design of flow microdevices, in the study of biological systems, such 
as lipid membranes [5], in the theory of Brownian engines and in the development of artificial 
molecular motors prototypes [6]. Another problem whose theoretical and technological 
importance today is widely recognized in the scientific community is the problem of nuclea-
tion as a precursor of the phase change in metastable systems, where the ‘rare events’ in the 
thermal fluctuations intensity, could lead to overcome the energy barriers for phase transi-
tions [7, 8]. This problem is intimately connected to the phenomenon of cavitation [9]. 
Nowadays the study of the above problems, is almost uniquely represented by molecular 
dynamics (MD) simulations [10], which for a large part of the real systems are often 
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computationally too expensive and therefore limited to very small systems, often far from the 
technological reality.

We aim to study nucleation processes by means of FH, in order to understand the role of 
thermal fluctuations in cavitation. Before discussing the mathematical model, it is worth to 
remember the main features of nucleation in liquid system. A liquid held at atmospheric 
pressure can be heated up to a temperature far beyond its boiling point. In this condition the 
liquid is called superheated, or more generally metastable. Metastability can be obtained 
analogously by decreasing isothermally the pressure under its saturation value. At low enough 
temperature – at ambient temperature in the case of water, e.g. – the liquid can be stretched 
down to negative pressure, the so called tensile condition. When the liquid is in metastable 
conditions a vapor bubble can nucleate with a probability related to the level or superheating 
or stretching and we refer to the nucleation event as boiling or cavitation, respectively [9]. 
Bubble nucleation is an activated process, since an amount of energy is needed to overcome 
the activation barrier. The presence of impurity or dissolved gas nuclei strongly lowers the 
energy barrier and simplifies the bubble formation. This is the reason why it is extremely easy 
to experience a cavitation event in water at non-extremely negative pressures even if it has 
been proven [11] that ultra-pure water can sustain 1 kbar tensions. Several theoretical models 
have been proposed in order to estimate the energy barrier and the nucleation rate, both in 
homogeneous and heterogeneous (near boundaries) conditions. The classical nucleation the-
ory (CNT) [12], poses the basis for the understanding of the phenomena. More sophisticated 
theories like density functional theory (DFT) [13] or MD simulations can give more precise 
estimates of the barriers and can correct some mis-prediction of the CNT. Both the methods 
are extremely powerful in stationary conditions and need to be coupled to specialized tech-
niques, like the string method [14], to study the nucleation events and the transition path [15].

Another promising approach is to use a phase field model where the order parameter is the 
mass density itself. In stationary conditions it recovers the DFT description with a squared-gra-
dient approximation of the excess energy [16]. The phase field model has the advantage of 
being easily extended to unsteady situations, enabling the full description of both the thermo-
dynamic and the fluid dynamics fields [17]. The model, in its original form, is deterministic 
and cannot capture spontaneous nucleation originated by thermal fluctuations, in absence of 
external forcing. To this purpose, the theory of FH [18] represents the natural framework to 
embed thermal fluctuations inside the phase field description. This approach has been suc-
cessfully exploited in [19] to follow the spinodal decomposition in a liquid–vapor system. 
Aim of this work is to study the homogeneous nucleation of vapor bubbles in a metastable 
liquid, by the means of diffuse interface approach with the addition of thermal noise.

2 HYDRODYNAMIC FLUCTUATIONS IN EQUILIBRIUM STATE
In order to achieve a suitable description of fluids at mesoscopic scale the effects of thermal 
fluctuation have to be included in the classical hydrodynamic equations. Originally based on 
phenomenological arguments, the theory of FH has been developed by Landau and Lifshitz 
(1958, 1959) [1], and subsequently it was framed in a more general contest of stochastic 
processes theory [2]. The main idea of Lifshitz and Landau theory is to treat the thermody-
namic fluxes as stochastic processes. As prescribed by the thermodynamics of irreversible 
processes at macroscopic level, thermodynamic fluxes are the expression of microscopic 
molecular degrees of freedom of the thermodynamic system. Under this respect dissipation 
in fluids can be seen as macroscopic manifestation of the energy transfer arising from random 
molecular collisions. Thus at mesoscopic scale, thermodynamic fluxes have to be modeled as 



 M. Gallo, et al., Int. J. Comp. Meth. and Exp. Meas., Vol. 6, No. 2 (2018) 347

stochastic tensor fields, whose statistical properties can be inferred by enforcing the fluctua-
tion-dissipation-balance (FDB). Before discussing the FDB, we aim to discuss the statistical 
properties of the fluctuations in an equilibrium fluid.

The static correlation function of a thermodynamic system in equilibrium can be evaluated 
from the entropy deviation ∆S from its equilibrium value S0. For single component systems 
∆S can be expressed as a functional of fluctuating fields of mass density, dr(x; t), velocity, 
dv(x; t) and temperature, dq(x; t)

 ∆ ∆S S S S s t s dV
V

= − = = −∫0 0[ , , ] ( , ) ,δρ δ δθ  xv   (1)

where the integration is over the system volume V, s (X; t) is the entropy density per unit 
volume and s0 is its equilibrium value (i.e. S0 is the entropy maximum).

Under these assumptions the probability distribution functional for the fluctuating fields 
∆=(dr, dv, dq) is (Einstein’s assumption)
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Thus the static correlation functions can be evaluated by solving the path integral
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For small fluctuations, the entropy functional can be expended in a Taylor series around the 
equilibrium value. A convenient starting point is the expression of the entropy in terms of its 
natural variables, namely internal energy u and density r,
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Where the constraints of energy and mass conservation,
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must be enforced. The internal energy, whose fluctuation is u in the constraints given above, 
can be derived from the Helmholtz free energy functional. Here we use the famous Van der 
Waals square gradient approximation in order to describe the two-phase liquid-vapor 
system
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where f0 is the classical bulk free energy and l is the capillary coefficient, related both to the 
surface tension and to the interface thickness.

All terms appearing in the right hand side of eqn. (4) can be expressed in terms of suitable 
thermodynamic coefficients and of the fluctuations of density, temperature and velocity, e.g.
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where cv is the specific heat at constant specific volume, cT the isothermal speed of sound, p 
the pressure and µc = dF[r,q]/ dr = ∂f0/∂r–l∇2r the (generalized) chemical potential.

Assuming that the fluid is very close to equilibrium and the fluctuations are small with 
respect to the mean value, the entropy functional can be approximated by a quadratic form in 
the fluctuating fields,
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where ∆S0 denotes the quadratic approximation around the maximum. Thanks to this approx-
imation, the generic correlation function (3) can be evaluated in closed form by integrating 
Gaussian path integrals. We skip here the details of the calculation, but we refer to [6, 20] for 
an in-depth study. As a result of the integration, the entire correlation tensor C∆=〈∆⊗∆†〉 
reads,
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We can deduce that, in the Gaussian approximation, the equilibrium correlations for velocity 
and temperature are short ranged (delta correlated in space, actually) and the cross correlation 
of the fluctuating fields are zero.

An important quantity in the theory of liquids is the Fourier transform of the correlation 
tensor, the so called static structure factor. In particular the density structure factor, defined as

 S(k) = 〈dr(k) dr*(k)〉 (10)

assumes a key role, both from an experimental [21] and a numerical [3] point of view. In eqn. 
(10) dr(k) is the Fourier transform of the density fluctuation

 dr(k) = ∫dXe-ik∙x(r(X)–〈r〉) (11)

with 〈r〉 being the bulk mean density and the symbol * denoting the complex conjugate. For 
a single component fluid embedded with capillarity, the Fourier transform of the density 
component of eqn. (9) reads
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3 LIFSHITZ-LANDAU-NAVIER-STOKES EQUATIONS WITH CAPILLARITY 
The dynamics of the mesoscopic system of our interest is governed by a system of equation 
expressing mass, momentum and energy conservation, with the addition of stochastic contri-
butions (Lifshitz-Landau-Navier-Stokes [LLNS] equations with capillarity):
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where S and q are the classical deterministic stress tensor and energy flux, respectively, and 
where the terms with the prefix d are the stochastic parts, whose statistical properties will be 
inferred from the fluctuation-dissipation theorem (FDT). For a simple one-component New-
tonian fluid embedded with capillarity (the free energy functional is expressed as in eqn. 6) 
the stress tensor S and the energy flux q can be easily deduced by standard non-equilibrium 
thermodynamic methods [22]:
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3.1 Fluctuation-Dissipation-Balance

To correctly model the stochastic stress tensor dS and heat flux dq we need to recall the FDT. 
Here for the sake of brevity we report the full calculation for the 1D case. Generalization to 
the 3D case is straightforward and the results will be postponed to the next section.

The system of equations (eqn. 13) in the 1D case is rewritten as
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where, for the ease of calculation, the energy equation is here expressed in terms of temper-
ature. In the equations µ is the dynamic viscosity, k is the thermal conductivity and the terms 
svWv and sqWq represent the stochastic forcing. W is a standard Wiener process and sv/q two 
suitable operators that will be later identified by means of the FDB.

The above system of equations can be linearized around the mean solution {r0,0, q0}. Such 
linearization provides a set of stochastic partial differential equations, whose equilibrium 
(statistically stationary) solution is a Gaussian field. The linearized system can be formally 
expressed in the form ∂t∆ = L∆ + f, where L is the linearized Navier-Stokes operator with 
capillarity which reads
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f(x,t) is a Gaussian vector process (with three components, in this case) whose correlation is 
† ˆ ˆ( , ) ( , ) ( , ) ( ),x s x q x x s qd⊗ = −f f Q   with ˆ( , )x xQ   a matrix depending on x  and x̂  Note that 

delta correlation in time is explicitly assumed. The stochastic forcing f is related to the stand-
ard Wiener process Wdt = dB by the linear relationship f = KW, where W = {Wr,Wu,Wq}

T is 
a Gaussian delta correlated process characterized by the correlation 
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is a linear operator acting on the noise.
The solution of the linear system is formally expressed as
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where the last term which keeps memory of the initial conditions vanishes for large times. 
Consequently the equilibrium correlation is
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The above integral can be performed in closed form assuming the existence of a Hermitian 
non-singular operator E-1 such that the operator Q can be decomposed as

 Q=–LE–1–E–1L† (21)

With this position the integrand appearing in eqn. (20) is the exact derivative with respect to 
the delay time s of eL(t–s)E–1 eL†(t–s). Hence eqn. (20) leads to

 lim , 
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−

⊗ = =∆ ∆
∆
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hence the operator E–1 exists indeed and coincides with the correlation matrix C∆, see eqn. (9).
Given the expression for Q, eqn. (21), and the identity E–1 = C∆ it follows

 Q =–(LC∆ + C∆ L†)=(M + M†)= 2kBO (23)

where M = -LC∆ and O is called the Onsager matrix. Relationship (23) is the form the cele-
brated FDB takes for the present system.

The unknown operators su/q can finally be identified by enforcing the FDB eqn. (23),

 † †ˆ( , ) ( ) WW 2 ( ),Bx x s q k s qd d− = = −Q K K O   (24)

 KK†=2kBO=–(LC∆+C∆L†)=M+M† (25)

The explicit calculation of the right hand side of this equation is performed using the known 
expression for L and C∆ (eqns.17 and 9) and by taking the transpose of the real matrix M after 

†
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considering that even differential operators are self-adjoint ∂ = ∂xx xx
  while odd ones are 

anti-adjoint ∂ = −∂x x
 :

 M M KK
k

k

+ = = ∂ −

∂ −



0 0 0

0 0

0 0

0 0

0
2

0
2

0
2 2

m q
r

d

q
r

d
u

B
xx

B
xx

x x

k

c
x x

[ ( )]

[ ( )]
























,  (26)

providing the explicit expressions
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3.2 General form of the stochastic components in a 3D system

As shown in the previous sections, for a system in thermodynamic equilibrium, it is possible 
to infer the statistical properties of the stochastic fluxes by enforcing the FDT, eqn. 24. Hence 
the covariance of the stochastic process can be written as
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θ δ= 2 2kB k , concerning the heat flux. Moreover it is worth noting that the corre-
lation between thermodynamic force of different tensor rank has to be zero due to the 
Curie-Prigogine principle i.e. ( )
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  Thus in the theory of FH, the 
effect of thermal fluctuation appears directly in the Navier-Stokes equations as an ‘external’ 
force arising from the fluctuating part of the thermodynamic fluxes.

From an operative point of view it is more convenient to re-express the stochastic 
contributions in terms of the standard Wiener process as
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4 NUMERICAL SCHEME
LLNS equations have been discretized in the spirit of the method of lines, which consists of 
two different stages: the first stage concerns the spatial discretization, the second one is 
focused on the temporal integrator. Concerning the spatial discretization it is worth stressing 
that the different physical phenomena described by the LLNS system ask for specialized 
numerical techniques. A crucial point to be addressed is the correct reproduction of the sys-
tem statistical properties, in particular the adopted numerical scheme need to be consistent 
with the FDB. A necessary condition for the latter restriction is that the mathematical prop-
erties of the relevant continuum differential operators are conserved in the discrete formulation 
[23]. Equation (13) has been discretized on an equi-spaced staggered grid, following [3]. Due 
to staggering, scalar fields, like density, for example, are located at the cell center while com-
ponents of vector fields in a given direction are located at the center of the perpendicular face.

The numerical scheme has been validated by comparing the numerical equilibrium static 
correlations with the theoretical ones in the discretized equations. Here we report the com-
parison of the density static structure factor. In the discrete limit, the theoretical static structure 
factor (see eqn. 12) reads
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is the discrete version of square norm of k, arising from the discrete laplacian operator L in 
Fourier space. The numerical value of the density structure factor is calculated, following its 
definition, as

 Sf (kd) = 〈dr(kd) dr*(kd)〉 (36)

As shown in Fig. 1, numerical results are in very good agreement with the theoretical predic-
tion. This ensures that the numerical scheme is able to reproduce the statistical properties of 
the system, i.e. the FDB is preserved in the discretized equations.

5 BUBBLE-NUCLEATION SIMULATIONS
The homogeneous vapor bubble nucleation is here studied by means of the LLNS system of 
equations presented in section 3. In particular bubble nucleation is investigated in a metasta-
ble liquid enclosed in a cubic box with periodic boundary conditions. The fluid is characterized 
by an equation of state that recover the properties of a Lennard-Jones fluid [24].

By introducing the following reference quantities s=3.4×10–10 m as length ∈ = 1.65 × 
10–21 J as energy, m = 6.63×10–26 kg as mass, Ur = (∈/m)1/2 as velocity, Tr=s/Ur as time, 
qr = ∈/kB as temperature, µr=√m∈/ s2 as shear viscosity, cur=mkB as specific heat at constant 
volume and kr= µr cur as thermal conductivity; the dimensionless fields are defined as  
r*= r/rr, q*= q/ qr, u*=u/Ur

Hence the dimensionless fluxes (eqns. 14, 15, 30, 31) read
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where C = lrr/s
2Ur

2 is a capillary number, fixed in our simulations as C = 5:244, to repro-
duce the exact value of surface tension expected for a Lennard-Jones fluid [24]. The system 
volume V* = (600)3 has been discretized on an equi-spaced grid, containing 50 cells in each 
directions.

Several metastable conditions have been investigated and here we report the results of four 
different simulations at fixed temperature q*= q*eq = 1.25 and different bulk densities, explor-
ing the whole range of metastable conditions at that temperature. In this case the metastable 
range of densities is ρ ρ ρL sat spin

* * *, [ . , ],∈ 




= 0 44  0.51  where ρsat

*  and ρspin
*  are the dimension-

less saturation and spinodal densities, respectively. Only 10 runs for each simulation have 
been carried out in order to perform statistical averages of the results since the macroscopical 
observables, like the nucleation rates, have demonstrated to be statistically robust.

A few snapshots of the system evolution in the different metastable conditions are shown 
in Fig. 2. Starting from a homogeneous liquid phase, the hydrodynamic fluctuations lead the 

Figure 1: Static structure factor for a capillary fluid in a 3D system. On the first row the 
qualitative comparison between the theoretical prediction (left) and the numerical 
result (right). On the second row a more quantitative comparison of the structure 
factor at different fixed wave numbers ky, kz.
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system to spontaneously decompose in two different phases. The vapor nuclei starts forming 
with a complex shape, far from a spherical one, as observed in other works [10]. After reach-
ing the critical size, they start expanding up to a stable equilibrium state. This new 
thermodynamic state is characterized by the presence of several stable vapor bubbles in equi-
librium with the surrounding liquid. The number and the dimension of the bubbles in the 
latter stage is strictly connected with the initial metastable condition, as evident in Fig. 2. In 
Fig. 3 we report a quantitative analysis of the time evolution of the number of bubble nuclei 
that exceed the critical size. The same two different metastable conditions of the snapshots 
reported in Fig. 2 are here analyzed. As apparent, the dynamics of the system can be divided 
in two main stages: during the first one the number of bubble increases almost linearly with 
time (with a constant rate); when the system is populated enough, the second stage consists 
in the expansion-coalescence dynamics when the nuclei increase their size up to the equilib-
rium radius and some of them coalesce with neighboring bubbles. As shown in Fig. 3, the 
metastable condition at rL = 0.46, which, among those we have considered, is the closest one 
to the spinodal – hence the one with lower energy barrier to be overcome to nucleate bubbles 
– leads to a more populated system and clearly shows more frequent coalescence events. At 
rL = 0.48, instead, only the expansion of the bubbles is observed after reaching an almost 
stable number of bubbles.

Figure 2: Snapshots during the nucleation process in two different thermodynamic conditions: 
on the left r*= 0.46 q*= 1.25, snapshots taken at time t* = 100, t* = 700, t* = 1000, 
t* = 2700; on the right r* = 0.48 q*= 1.25, taken at time t* = 100, t* = 1000, t* = 
5000, t* = 8000.

Figure 3: Number of bubbles having a size greater than the critical one vs. time, for the 
thermodynamic conditions r*= 0.46 q*= 1.25 on the right and r*= 0.46 q*= 1.25 
on the left.
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The analysis of the first stage of the dynamics, when the number of bubble increases, 
gives access to another crucial observable, the nucleation rate J*, representing the number 
of bubbles formed per unit time and per unit volume. From an operative point of view, the 
nucleation rate is here calculated as the slope of the linear fit of the initial part of the curves 
in Fig. 3 [10]. The calculated nucleation rates at different metastable conditions are com-
pared in Fig. 4 with the estimate given by the CNT, formulated here in the context of 
closed systems, and with some numerical results of other authors [10]. As well-known 
CNT leads to a theoretical prediction for the energy barrier ∆E and the nucleation rate  
J n m E kCNT L B= ( )2g p q/ exp - /∆ , where nL is the number density of the liquid phase, and 
the surface tension. Despite the strong assumptions in CNT, the rates calculated with our 
numerical simulations are only slightly smaller than predicted by classical theory. An 
opposite behavior is observed far from the spinodal conditions where CNT over-estimates 
the nucleation rate, as confirmed by molecular dynamic simulations in the microcanonical 
ensemble (NVE) [10].

6 DISCUSSIONS AND CONCLUSIONS
In this work the problem of homogeneous nucleation of vapor bubbles has been addressed by 
the means of FH, in particular, a phase field description supplemented by stochastic fluxes is 
exploited here to reproduce the main features of nucleation process. In this context, starting 
from the Einstein’s theory of equilibrium field fluctuations, the intensity of the thermal noise 
is fixed to reproduce the statistical properties of the hydrodynamic fields. The evolution of the 
system is governed by a set of stochastic processes – reproducing the Einstein-Boltzmann 
probability distribution for the fields – whose deterministic part is represented by the capil-
lary Navier-Stokes equations. Numerical results show how in a homogeneous metastable 
liquid, the hydrodynamic fluctuations lead the system to spontaneously decompose in two 
different phases. The nucleation rate strongly depends on the initial thermodynamic condi-
tions, and a good agreement with CNT has been found.
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Figure 4: Nucleation rate comparison between fluctuating hydrodynamics numerical results 
(red squares) and CNT (green circles) at different metastable conditions. In the 
inset we report the comparison with other authors.
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