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ABSTRACT
The Czochralski crystal growth manufacturing process results in small periodic and undesirable fluc-
tuations in the crystal diameter under certain conditions. These fluctuations have strong, non-linear 
characteristics and are likely to appear at combinations of critical values of certain parameters, such as 
the rotational velocity, the ratio of crystal radius to crucible radius, and the temperature gradient.

This paper uses perturbation theory to try to identify the critical combinations of parameters that 
lead to these fluctuations. Firstly, the zero and first-order equations are obtained. Secondly, numer-
ically-based steady-state solutions of these equations are calculated, and finally, the stability of the 
steady-state solutions is examined. It is observed that the steady-state solutions do not exhibit any 
unusual patterns for any values of the configuration parameters. Furthermore, all the steady-state 
solutions are found to be stable for all initial conditions; therefore, the steady-state solutions and the 
analysis of their stability did not indicate the source of the observed fluctuations. This analysis suggests 
that a better approximation of the equations such as second order perturbation analysis may be needed 
to identify the conditions that lead to the observed fluctuations.
Keywords: Czochralski crystal growth, finite differences, periodic fluctuations, perturbation theory, 
steady-state solution.

1  INTRODUCTION
The Czochralski crystal growth is the most commonly used technique for growing crystals. 
Fluctuations are often encountered in this process and these are believed to be the cause of in 
homogeneities in the crystals that are undesirable in many applications.

A number of theoretical and experimental studies were carried out in an attempt to reduce 
or control the fluctuations in the Czochralski crystal growth process. This paper extends the 
preceding efforts to develop methods to explore the source(s) of these fluctuations by demon-
strating that the first-order steady-state solutions of the rotational velocity and temperature 
are stable and do not exhibit any unusual patterns for any values of the configuration param-
eters in the Czochralski crystal growth process.

2  GOVERNING EQUATIONS
The melted silicon is considered to be viscous and incompressible, with constant fluid prop-
erties except for the density change with temperature. It resides in a cylindrical crucible of 
radius Rc and depth H, Fig. 1. The crystal rod used to form the silicon ingot has a radius rc 
and an angular velocity ω.

The compressibility of the melted silicon is ignored except for the buoyancy effect due to 
the density change with temperature [1]. Based on these assumptions the governing equations 
simplify to:
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Equation (1) represents the continuity equation, eqn (2)–(4) stand for the momentum 
equations in the r, θ, and z directions respectively, and eqn (5) represents the energy  
equation.

3  BOUNDARY CONDITIONS
At the bottom and wall of the crucible, the fluid velocity vector is zero and the temperature 
is the wall temperature (TH). At the melt surface and under the crystal, the temperature is 
the crystal temperature (Tc), the fluid transverse velocity is ω times the radius of the crystal, 
and the remaining velocities are zero. At the free boundary, the first-order derivative of the 
temperature and velocity vector with respect to z are zero. At the surface of the melt, the pres-
sure is atmospheric (patm). Below the center of the crystal, the fluid rotational velocity, the 
first-order derivative of the other velocities, and temperature with respect to r are zero. The 
top annular fluid surface between the crucible and the crystal is a free surface.

Based on the above descriptions, the mathematical expressions for the boundary condi-
tions are then as follows:

Figure 1: Geometry of Czochralski crystal growth.
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4  APPROXIMATE SOLUTION PROCEDURE
First-order perturbation with respect to ω and ∆ are considered in the analysis, where ∆ is the 
difference between Tc and TH.

In the steady-state condition, all partial derivatives with respect to time are zero, yielding 
the following equations:

Δ-perturbation:

	 ∆ =2 0T” 	 (6)

ω-Perturbation:
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5  CONVERGENCE OF THE NUMERICAL STEADY-STATE CONDITION
The numerical finite difference solution of the first-order steady-state equations is now pre-
sented and discussed. As an example, Fig. 2a–d shows contour plots of the transverse velocity 
for fixed configurational parameters H, rc and Rc, with fixed difference order 8 and a variable 
spatial discretization step size which decreases by a factor of 2 sequentially from (a) to (d). 
Similarly, Fig. 3a–d shows an equivalent study for the temperature. It can be noted that for 
each case, the contours look very similar as the spatial step size decreases which suggest that 
convergence is achieved. This observation concerning convergence remains true for a range 
of configurational parameters (H, rc and Rc) and may be numerically verified at all locations 
except for a small neighbourhood near the upper corner (i.e. at r = Rc and z = H). This excep-
tion is discussed next.

To further explore convergence, and especially the high gradients near the upper right 
corner, the transverse velocity at the surface z = H for a range of parameters is plotted in 
Fig. 4a–d. Similar results are also shown for the temperature in Fig. 5a–d. It is noted that 
in all cases, all the curves are practically the same almost everywhere as seen in the insets 
of Figs 4 and 5. To focus on the upper right corner, the main plots in a range that is about 
0.2Rc away from that corner is shown. It is noted that as the step size decreases, all the 
curves seem to tend towards a common curve (shown dashed) that seems to have a singu-
larity at the upper right corner point. The behaviour of these curves is an interesting but 
typical behaviour of non-uniform convergence. To further characterize the behaviour near 
the upper right corner an asymptotic analysis of the first-order equations near that corner is  
considered next.
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As a first step to studying the asymptotics near the upper right corner, we change the inde-
pendent variables from (r, z) to (ρ, φ) where these are defined as:

	 ρ = ( ) ( ) ,r R z Hc− + −2 2 Φ = −
−

−tan ( )1 z H

r Rc

	

Figure 2: �Transverse velocity vθ contours for the steady-state first-order solution with 
difference order 8 and number of steps in the r-direction 10, 20, 40 and 80 for (a), 
(b), (c) and (d) respectively. The configurational parameters are H = 0.5, r = 1 and 
rc = 0.3. The thick grey line shows the location of rc.

Figure 3: �Temperature (T) contours for the steady-state first-order solution with difference 
order 8 and the number of steps in the r-direction 10, 20, 40 and 80 for (a), (b), (c) 
and (d) respectively. The configurational parameters are H = 0.5, r = 1 and rc = 0.3. 
The thick grey line shows the location of rc.
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The geometry and boundary conditions associated with these new variables near the upper 
right corner are shown in Fig. 6a where u can be either the transverse velocity or the temper-
ature. In terms of these variables, the solutions are in the form

u cr sp= cos( ),Φ  where c, p, and s are constants to be determined.
Substituting the above into the first-order equations of either the transverse velocity or the 

temperature, considering the limit as ρ→0 and also applying the boundary conditions, it can 
be determined that c may be any constant, and p = s = ±1, ±3, ±5, etc. (negative or positive 
odd numbers).

In particular, the smallest negative exponent is p = −1 and it is expected that only this sin-
gular term exists unless some additional source condition is applied at the corner. Therefore, 
both the transverse velocity and the temperature are expected to behave asymptotically as 
follows:

	 v orTq ~
cos( )Φ

r
	

Using the above functional form and matching the far-field behaviour in each case, the thick 
dashed curves shown in Figs 4 and 5 are obtained. It is noted that the match between the 
asymptotic form and the numerical results is very good in all cases with the numerical results 
further approaching this asymptotic behaviour as the step size decreases. The finite differ-
ence approach does not have a built-in singularity; therefore the corresponding results will 

Figure 4: �Transverse velocity vθ as a function of ‘r’ at z = H for difference order 8 and the 
number of steps in the r-direction equal to 10, 20, 40, 80 and 160 as the lines get 
darker.
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Figure 5: �Temperature (T) as a function of ‘r’ at z = H for difference order 8 and the number 
of steps in the r-direction equal to 10, 20, 40, 80 and 160 as the lines get darker.

Figure 6: Change of variables from (r, z) to (ρ, φ) near the corner r = Rc and z = H to study the 
asymptotic behaviour of the temperature or the transverse velocity.
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never exactly match the singular asymptotic behaviour. The leading singularity which is the 
term with the smallest negative exponent in the asymptotic analysis for a sector with angle α  
(Fig. 6b) is given by:

	 p s= = −





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a
2 	

This indicates that the leading singularity decreases as α increases. For example, the lead-
ing singularity equals −1 and −0.75 for α = 90° and α = 120°. This suggests that it is possible 
to mitigate or reduce the effect of the singularity by redesigning the crucible so that the 
incident angle of the vessel with the liquid at the free surface has an α that is larger than 
90°. Verification of this mitigation potential requires either detailed experimental work or an 
analysis of the fully nonlinear Navier-Stokes equations.

Based on the above discussions, it can be concluded that the finite difference approach 
gives convergent results almost everywhere except near the upper right corner. At that point 
there is a singularity which has been asymptotically quantified and numerically verified. With 
these results, a discussion of the stability of these steady-state solutions is provided in the 
next section.

6  STABILITY OF THE STEADY-STATE SOLUTION
Several researchers have attempted to analyze the stability of incompressible flows [2–6].

From this paper, one can notice that the stability of the full nonlinear equations in the 
vicinity of the first-order solutions may be unstable even if the first-order solutions them-
selves turn out to be stable. This observation is important because the results show that the 
first-order solutions are stable but it is suspected that the singularity at the upper right corner 
to be a source of turbulence and therefore, at least near that corner, the steady-state solutions 
may be unstable.

The stability of the first-order solutions depends on the boundary conditions as well as on 
the governing equations. This is the main reason why a numerical approach to study the sta-
bility is adopted. Although the governing partial differential equations are relatively simple, 
the boundary conditions are of the mixed type at the top boundary and is the main source of 
difficulty in this problem.

The approach adopted in studying the stability of the steady-state solutions is to spatially 
discretize but to leave the time dependence as an analytic expression. The spatial discretiza-
tion is done as before using finite differences and includes the application of the boundary 
conditions. The result of this approach is a dynamical system of coupled ordinary differential 
equations where the variables are the transverse velocity or temperature at the grid points. 
This leads to linear dynamical systems; therefore the steady-state solutions are stable if all 
real parts of all the eigenvalues are negative if the maximum real part of all eigenvalues is 
negative. Similar to the steady-state solution, the convergence of the maximum real part of 
all eigenvalues is studied. Examples of such a convergence study are presented in Table 1 for 
the transverse velocity and temperature. These examples indicate that, in all cases shown, the 
steady-state solution is convergent and stable.

Having considered convergence, the relative stability of the solutions as the parameters 
change is now considered. It is noted that the magnitudes of the eigenvalues, though neither 
their signs nor their ordering, depend on the scaling used for the time and spatial variables. 
To study the relative stability, the maximum (or least negative) real part of all eigenvalues 



	 N. Georges, et al., Int. J. Comp. Meth. and Exp. Meas., Vol. 4, No. 4 (2016)� 611

over a grid of values of rc and H were calculated but for fixed Rc = 1, which sets the relative 
spatial scale. The results for either transverse velocity or temperature are similar and are 
shown in Fig. 7. The results indicate that the steady-state becomes relatively less stable, 
in the sense that it takes relatively longer to be achieved, as the height H of the cylinder 
decreases and as the rod cylinder rc increases. Speculatively, the hypothesis is that under 
such conditions, the solution to the full nonlinear Navier-Stokes equations would show more 
turbulence near the upper right corner which is the location of the singularity in the first-or-
der equations. In other words, it is suggested that the results may indicate that instability, 
probably in the form of turbulence, becomes more prevalent as the cylinder height decreases 
or as the rod radius increases. The effect of increasing turbulence as the rod radius increases 
is consistent with previous experimental results, although not directly observed. This effect 
of rod radius on turbulence is also consistent with previous numerical studies of the fully 
nonlinear Navier-Stokes equations of this problem. It would be interesting to investigate 
whether the speculation concerning the cylinder height, or rather the liquid height H, can 

Table 1: �Convergence study for the largest real part of all eigenvalues for the transverse 
velocity and temperature for various configurations.

Parameters Transverse Velocity Temperature

H rc Rc n = 10 n = 20 n = 30 n = 40 n = 10 n = 20 n = 30 n = 40

0.5 0.30 0.5 −96.03 −94.02 −93.57 −93.37 −70.24 −67.66 −66.78 −66.29

0.5 0.60 1.0 −44.93 −43.64 −43.32 −43.18 −40.71 −39.63 −39.32 −39.18

0.5 0.15 0.5 −80.90 −76.09 −75.38 −75.09 −56.92 −53.13 −52.15 −51.66

0.5 0.30 1.0 −28.43 −27.83 −27.69 −27.64 −24.27 −23.65 −23.49 −23.42

Figure 7: �Variation of the least negative real part of all eigenvalues of the steady-state spatial 
operator for the transverse velocity and temperature as a function of rc and H with 
Rc = 1 using a contour plot.
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also be corroborated by either experiments or the numerical solution of the fully nonlinear 
Navier-Stokes equations.

7  DISCUSSION OF THE STEADY-STATE SOLUTION
Having discussed the convergence of the numerically-based solutions and their stability, 
sample solutions for each of the transverse velocity and the temperature are presented. 
Examples of the steady-state solutions are illustrated using contour plots in Fig. 8a–i for 
the transverse velocity and in Fig. 9a–i for the temperature. The solutions are all topolog-
ically similar with the most interesting feature being a very high gradient near the upper 
right corner (i.e. near r = Rc and z = H) as discussed before. One can also notice that 
the gradients in the z direction are larger as the height of the liquid decreases. This last 
observation may be related to the decrease in relative stability as the height of the liquid 
decreases.

Figure 8: Transverse velocity vθ contours for the steady-state first-order solution. The 
configurational parameters are Rc = 1, H = 0.3, 0.5 or 0.7, rc = 0.3, 0.5 and 0.7. The 
thick grey line shows the location of rc in each case. Note that the contour patterns 
are all topologically similar with the common feature of having high gradients at 
the upper right corner (i.e. near r = Rc and z = H).
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8  CONCLUSIONS AND RECOMMENDATIONS
In this paper, a numerical study of the first-order equations associated with the Czochralski 
crystal growth process is presented. Steady-state solutions are presented and it was shown 
that the numerical results are convergent and that the steady states are stable. Two observa-
tions that may be useful in elucidating the behaviour of this process:

There is a singularity in the first-order equations near the upper right corner. This singular-
ity does not exist in the solution of the fully nonlinear equations but rather indicate a source 
of turbulence in the process at that corner. If this is the case, a way to mitigate the singularity 
was suggested, and hence the level of turbulence, by redesigning the lip of the cylinder at the 
upper right corner.

The steady-state solutions become relatively less stable as either the height of the liq-
uid decreases or as the size of the rod increases. Most likely this change in relative 
stability is related to the process problem encountered with the Czochralski crystal 
growth process when the rod radius to cylinder radius ratio increases beyond some  
threshold.

While the results presented in this paper are suggestive, the solution to the first-order equa-
tions does not lead to definite conclusions. Therefore, the authors recommend further studies 
to extend the current one into the nonlinear range either through a second order analysis or 
through a numerical analysis of the nonlinear Navier-Stokes equations for this process. In 
parallel, the authors recommend an experimental study to validate and provide insight into 
the nature of the process with special emphasis to identify what is happening near the upper 
right corner of the cylinder.

Figure 9: Temperature (T) contours for the steady-state first-order solution. The configurational 
parameters are Rc = 1, H = 0.3, 0.5 or 0.7, rc = 0.3, 0.5 and 0.7. The thick gray 
line shows the location of rc in each case. Note that the contour patterns are all 
topologically similar with the common feature of having high gradients at the upper 
right corner (i.e. near r = Rc and z = H).
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