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ABSTRACT
This article considers the questions connected with creation of optimum algorithms using the laws 
of thermodynamics as applied to a computing process. Ideas and methods of phenomenological and 
 statistic thermodynamics are used to estimate the amount of calculations or volume of the neural 
network. Introduction of the other thermodynamic functions, besides entropy, and also defi nition of 
the three thermodynamic origins in the context of calculations allow to study stability, organize the 
parameters according their information weights, carry out the decomposition of the complex systems, 
construct the rapid algorithms. The way of creation of the neural network structure is offered, consisting 
in use of the pre-trained fragments.
Keywords: Computational entropy, neural network structure, rapid algorithms, thermodynamics of 
 calculations.

1 INTRODUCTION
Construction of optimal algorithms, that can minimize the cost of computer time with the 
defi nite accuracy of results, is an important and actual task. Earlier Hinchin [1] and Kolmog-
orov [2] introduced the concept of computational entropy. It allows to get closer to estimation 
of the computations complexity in some problems. After that a variety of researches appeared 
[3–6], where the entropy was effectively used for the complexity evaluation of algorithms 
and programs. 

In this work the other thermodynamic functions, besides entropy, are introduced: pressure 
as costs in the number of operations for the dimension change, temperature as cost related to 
the extracted information, potential as change of operations number in connection with 
obtaining the answer with a certain probability. Some applications of the offered ideas are 
described.

2 THERMODYNAMIC FORMALISM
It is offered to study algorithms and neural networks structures by means of the following 
thermodynamic formalism.

Suppose, there is an iterative computational process:

 
 (1)

where  – point in the n-dimensional phase space X, F – some algorithm, 
k – number of iteration, xk – noise considering parameter.
If the process converges, then

 x x k i ni
k

i→ → ∞ =* , , , ,..., ,1 2  (2)

where x*– fi nal point, x X* .∈
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The array of phase points with density r( ,..., )x xn1  is taken in X. This array may be 
 considered as a sort of ‘phase gas’, which compresses to the point x* during calculations.

It is offered to observe this process from the thermodynamic point of view. The fi rst 
results in this direction belong to A. N. Kolmogorov and his research group. They  introduced 
the concept of computational e – entropy and studied its properties [1,7]. Also, interesting 
researches in this direction were carried out by Babenko [8], Aho et al. [9], Traub and 
Voznyakovskiy [10], Fuller and Reyzin [11]. Below the other  thermodynamic functions are 
introduced and thermodynamic postulates for the computational process  formulated.

The fi rst law of thermodynamics:

 dN T dI p dn d= ⋅ + ⋅ + ⋅m p, (3)

where N – number of operations, taken for the ‘phase gas’ compression, N – analog of the 
internal energy (has the additivity property), I – information, received in the process of 
 calculations.

Algorithmic temperature:

 
T N

I n

=
∂
∂ ,

,
p

 (4)

is a number of operations, taken for obtaining of the information unit.
Pressure:

 
p N

n I

=
∂
∂ ,

,
p

 (5)

represents the number of operations, taken for dimension number change, if it occurs during 
calculations.

Summand m p⋅d  in eqn (3) takes into account the probabilistic character of the calculation 
process (errors, use of random numbers). Here:

 
m

p
=

∂
∂
N

I n,

, (6)

p – probability of a correct solution, 0 1< <p . In some cases the defi nite decrease of p leads 
to a substantial decrease of the operations number N (methods Monte-Carlo, random search). 
The second law of thermodynamics. Thermodynamic irreversibility.

The calculation process is stable, if

 dI > 0. (7)

Using this inequality, algorithms can be tested for stability. This is much more effi cient 
 unconventional way, it does not require linearization and is applicable in complex nonlinear 
cases.

Obtained information:

 ΔI H Hk k m k k m, ,+ += −  (8)

where H Hk k m, +  – calculation entropy on the steps k and k+m.
The third law of thermodynamics. Unattainable zero temperature:
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The value, inverted to the algorithmic temperature, is also very interesting. It is called the 
output of the algorithm and is written as the obtained information divided by the number of 
operations:
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 (10)

Variational problem of search of the optimal distribution of the ‘phase gas’ initial density, that 
minimize the number of operations ΔN for specifi c information ΔI leads to the L.Boltzmann’s 
distribution:
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Hence it is elementary to obtain all the known relations of statistical thermodynamics, 
 concordant with the described phenomenological approach. If the local linearization of the 
mapping eqn (1) is made according to the method of Newton:
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and the information of Hartly is inserted:
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where V Vo k,  – initial and fi nal volumes in the phase space X, then can be shown, that:
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where li – eigenvalues of matrix A, ci – constants, proportional to the noise level for the 
 frequencies li . In highly conditional case, if taken ls = l; cs = c; s = 1,2,...,n, and consider 
the calculation costs proportional to k n n⋅ +( ),n  then the expression can be written:

 p n I T( ) ,n + = ⋅  (15)

which can be called as the equation of the algorithm state. In more complex cases the 
 equations of state will not be so simple.

The conception of thermodynamic cycles is applicable to iterative calculation processes. 
As example the minimum search by using the gradient method can be considered:
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comparing it to a Carnot cycle in the coordinates (I,T) – Table 1.

Let 0 01 2 1 2< < < <I I T T, .

Sector 1. Gradient components are calculated, giving the direction ‘on target’. The output of 
the algorithm increases, temperature decreases.
Sector 2. Move toward the target according the obtained direction. Entropy falls down, 
 information grows.
Sector 3. The calculated gradient components have no value at the new position of the 
 searching point. They are discarded. The output decreases and temperature grows.
Sector 4. The decision is made to use the same method in the new point. Return to the starting 
point. The cycle (I, T) closed up on the diagram.

Besides stability evaluation the described formalism allows to fi nd the optimal ways of 
decomposition, allocate the major variables, reduce the task dimension, effectively  randomize 
calculations. 

The above formulation can be used in relation to neural networks. In this instance instead 
of the operations number N the value e is used, that is proportional to the energy diffusion of 
the neural network:

 e = ⋅ + ⋅b n b mn m , (17)

where n – neurons quantity, m – number of connections between neurons, b bn m,  – energies, 
dissipated respectively by neurons and connections.
Expressions (3), (4), (5), (6) may be rewritten in the form:

 d T dI p dn de m p= ⋅ + ⋅ + ⋅ , (18)
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If supposed, that all neurons work in the areas of the quickest transitions, where the 
 linearization is locally admissible, then expression (14) can be used:
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Here k – serial number of the neuron layer during the direct passage (from input to output). 
Based on this, it is possible to formulate the problems for the selection of principal  components, 
simplifi cation, network decomposition according the weakest informational connections, 

Table 1: Carnot cycle for the optimization process.

Sector
Temperature 

initial
Temperature 

fi nal
Information 

initial
Information

fi nal

1  T2  T1  I1  I1 
2  T1  T1  I1  I2 
3  T1  T2  I2  I2 
4  T2  T2  I2  I1 
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 transition to the new variables. Presence of the summand m p⋅d  allows to  suppose, that 
 processes randomization in the neural network using Markov algorithms may be effective.

3 APPLICATIONS OF THE THERMODYNAMIC FORMALISM

3.1 Calculation process stability

In this section some applications of the thermodynamic approach are considered. First of all, 
about the stability of calculation process. Suppose there is a multi-step iterative process:

 
 (21)

Here,  – point in the N-dimensional phase space, k – number of iteration. 
As said before, a variety of initial points X, 

rx X0 ∈ , which can be considered as some kind 
of the phase gas, move according eqn (21). In the phase space it is possible to set the grid 
structure, consisting of similar N-dimensional cubic cells, and according the number of 
 particles of phase gas, caught in each cell, to evaluate its density rk. It allows to trace the 
entropy change on each step of the calculation process Vatolin [12]:

 
H dx dxk k

X

k
N= − ⋅∫ r rln .. .1

 (22)

Entropy reduction, and, hence, information extraction, testifi es about calculations stability. 
Such approach to the stability evaluation surpasses the traditional one, based on linearization 
and eigenvalues analysis. For example, the display 

  U
k+ →1 1 at k → ∞  (23)

is, obviously, stable upon condition 0 < < ∞m . At the same time the traditional approach 
shows instability in described case. This was shown by Vatolin [13] for m = 1.

3.2 Dimension change

Now about the change of dimension. If the technology of the principal component analysis is 
used Haykin [14] and there is passing from coordinates  to new , then it is 
possible to defi ne information weight of each new coordinate as
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Here, li
k , ci

k – eigenvalues and noise levels on the interval of k-steps. The coordinates with 
low weights gi

k
 can be rejected, that means the dimension reduction. If it will be possible 

to achieve good conditionality li = Λ  and low noise level Ki = 0, then, under  preservation 
of the information quantity, the lowest dimension number of the system may be reached:
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However, the principal components method is a rather expensive operation. In some cases, 
when operating only the coordinates xi Kovalevskiy and Reshetnik [15], the rough estimation 
of their weight will be recorded as:

 
l
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The approach, based on the weights introduction, allows not only to reduce the dimension, but 
also to carry out the system decomposition. This applies both to internal, and to  external 
 connections. In case of a neural network the connections between neurons are meant. 
 Decomposition to blocks is conducted on the weakest connections with the smallest weights. 
For each block the temperature is introduced (it is measured by number of  operations on unit 
of taken information). Calculations begin with the block with the lowest temperature and 
 fi nish when the temperatures of all units are equalized and the required information is taken.

3.3 Improving of the neural network structure

An important way to speed up the calculations is the using of priori and posteriori  information. 
For each task the set of related tasks is constructed, which can be a source of information for 
the main task. Refraining from strict determination of likeness, it should be noted only, that 
equations for the related problems can be received by means of strikeouts or additions of some 
components to the initial equation of the main problem. Solutions of related tasks can be used 
at creation of constructions, in the form of which the solution of original task is looked for. 
These constructions include constants, which should be chosen optimally for the best 
 approximation. In case of neural networks it consists in inclusion of the pre-trained  fragments 
in the network.

Standard neural network architecture is shown on the Fig. 1. Usually, it has several layers 
of cells: R – receptor layer, which receives the input data; A – associative layer, neurons of 
this layer interpret the information; E – effector layer, giving the reaction, or answer, of 
 neural network. 

Figure 1: Standard neural network architecture.
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The following structure of a neural network should prove to be a productive (Fig. 2). Such 
neural network at a stage of training contains fragments with the adjusted synoptic  connections, 
previously obtained at the solution of tasks, conjugated with the original. According the offered 
scheme, the input image or its part is analyzed by the pre-trained blocks. Weights within the 
blocks do not change during the training process. Only the free weights w1, w2, … , wN on exits 
of fragments are to be set up. They may be received by means of the optimization algorithms 
(random search, genetic algorithm, inertial search). The answer on a network exit Ot may be 
given in the form of linear combination of pre-trained fragments answers:

 
Ot w Ok w Ok w Ok w OkM M i i

i

M

= ⋅ + ⋅ + + ⋅ = ⋅
=
∑1 1 2 2
1

... , (27)

where Oki – signal on the output neuron of the i-th neural fragment; wi – weighting  coeffi cient, 
concerning the infl uence of the i-th fragment on the fi nal answer.

It is also possible to activate the response according:

 

Ot
e
Ot
H

′ =
+

−

1

1
, (28)

where H – constant, that determines the parameters of sigmoid activation function.
Numerical experiments were made on training of a neural network to forecasting of 

 stochastic periodic function y eqn (29):

 
y A w t i Nj i i j i

i

N

= ⋅ ⋅ + =
=
∑ sin( ), ,..., ,f
1
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Figure 2: Neural network structure with the pre-trained fragments.
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w i

Ni =
⋅ ⋅2 p , (31)

 t tj j+ = +1 t,  (32)

where yj – value of function at the moment of time tj , Ai – amplitude, wi – frequency, ji – 
phase (random value), N = 20 – number of summands.

For comparison, the standard network architecture (Fig. 1) and the neural structure that 
includes the pre-trained fragments (Fig. 2) are taken.

Training pairs were created as follows. Ten consecutive values of function y yj j,..., +9 
were set on elements of an input layer of a neural network at parameter tj change with the 
fi xed step t. As the true answer on an output layer value of function y j+10 acted at the 
moment t j+10. Thus, the fi rst training pair would be written in the form {y y y1 10 11,..., ; }, 
 second – {y y y2 11 12,..., ; } and so on. For training of weights of the network’s fragments the 
similar  function with other value of time step t∗ was used. Obviously, by setting various 
values t it is possible to receive various sequences yj, connected, nevertheless, by the 
 conjoint periodic law. Randomnicity of process is characterized by a change range of j .

Processes of training of a neural network with standard architecture and networks with 
inclusion of pre-trained fragments are provided on Fig. 3. At comparison of the presented 
schedules it is visible that training of a neural network with the adjusted fragments occurs 
quicker, and even at long training the neural network of standard architecture doesn’t reach 
the same level of the right answers.

All appearances, accumulation of a database of the trained neural networks, allowing to 
solve various problems, will be a further improvement of neural network technologies 

Figure 3: Schedules of training of a neural network with standard architecture and networks 
with inclusion of the pre-trained fragments.
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(Fig. 4). In the process of the new problem solving the training algorithm will choose optimal 
fragments from database to upbuild the effective neuronetwork structure. 

1. Search for optimal solutions to the problem in the fragments database;
2. Structuring of selected fragments;
3. Weight training of each fragment in the resulting system response.

4 CONCLUSION
Thermodynamic formalism opens up new possibilities in building of the optimal algorithms 
for modeling of the complex dynamic systems and construction of the effective neural 
 networks. The use of thermodynamic laws and functions (temperature, pressure, potential, 
etc.) introduced for consideration of the computational process stability and system 
 dimensionality reduction. The way of creation of the neural network structure is offered, 
consisting in use of the pre-trained fragments. Training of such system consists in fi nding of 
the connections weights, considering infl uence of each fragment on the resultant answer. The 
new method allows to increase the speed of training of a neural network. The described ideas 
and methods will fi nd certain applications.
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