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ABSTRACT
We investigated gas–particle flows by using the three-dimensional incompressible Navier–Stokes 
equation with the immersed boundary method (IBM) to treat particles–wall collisions. We compared 
flow structures from the two-way coupled simulation with the one-way simulation that is usually used 
in the industrial simulation. In this study, all objectives, which are particles and walls, are defined 
by the level-set function for the ghost-cell method of the IBM. The proposed algorithms to represent 
particle–particle and particle–wall collisions are simple and stable for the coupling simulation. More-
over, flow structures obtained with the coupled simulation of the moving, colliding and rebounding 
particles are in good agreement with the previous numerical and experimental results. The one-way 
and two-way coupling simulations were carried out based on a number of particles of 50, 100 and 
200, respectively. As a result, the one-way scheme indicated more frequently collisions on the particle 
and wall than the two-way scheme. The reason is that the one-way scheme ignored the particle–flow 
interactions.
Keywords: immersed boundary method, particle–wall collisions.

1  INTRODUCTION
Shot peening process is often used for metal surface process for generating a compressible 
residual stress on the surface, which impacts the surface with a large number of particles shot 
by a compressible flow [1]. Nguyen et al. [1] investigated the location of particle–surface 
impacts in the multiphase flow simulation. They used the Euler–Lagrange approach and 
Reynolds-averaged Navier–Stokes equations, which cannot sufficiently model the particle–
flow interactions and the detailed flow structures.

We developed the three-dimensional Euler–Euler incompressible flow solver with an 
immersed boundary method (IBM) for examining the structures and behaviors of particles in 
the multiple particle–wall collisions. Therefore, the simulation captures the particle–flow 
interactions and the detailed flow structures by not using the turbulence model.

The aim of this study is to investigate the flows around multiple particle–wall collisions. 
We compare the two-way coupled simulation with the one-way simulation that is usually 
used for clarifying the effect of collisions on particle kinematics in industry and investigate 
the flow around particle–wall collisions.

2  NUMERICAL METHOD

2.1  Governing equations

The governing equations of the present flow solver are the three-dimensional incompressible 
Navier–Stokes equations and the equation of continuity. No averaging or filtering process is 
involved and the flows are solved without any turbulence models:
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where u, v, w, p, ρ and ν are the fluid velocity, pressure, density, kinematic viscosity, respectively. 
The fractional step method is applied for time marching. The grid is defined by an equally spaced 
Cartesian mesh. The convection term is evaluated by the second-order skew–symmetric scheme 
[2]. The pressure and diffusion term are calculated by the second-order finite-difference method. 
The Poisson equation of the pressure is calculated by the successive over-relaxation (SOR) 
method.

2.2  Immersed boundary method

Our flow solver represents objects by the level set and ghost-cell (GC) methods [3]. Each cell 
is classified as a fluid cell (FC), a GC, or an object cell (OC) by the classification manner of 
the level set function φ expressed as eqx. (3).
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The GCs are assigned in two layers as shown in Fig. 1. The flow equations in a GC are deter-
mined by the flow in an image point within the region occupied by fluid cells. To avoid 
recursive references, the probe length is set to 1.75 times the mesh size Δx. The primitive 

Figure 1:  Domain around an object.
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variables on the image point are interpolated of the values in the surrounding fluid. Finally, the 
value of a GC is defined by the value at the image point. To determine the velocity components 
of the GCs, non-slip boundary conditions are assumed at the object surface. The density and 
pressure are subjected to Neumann boundary conditions as follows
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2.3  The motion of the particle

The particles movements obey Newton’s equations for linear and transportation of a rigid body. 
Note that this simulation ignores the rotation of the particle. The velocities of two particles 
(labels 1 and 2) after their collision are, respectively, given by
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where mp, up = (up, vp, wp) and e are the mass, velocity of the particle coefficient restitution 
respectively, and c is a standardization vector [4, 5]. The collision detection of particles 1 and 2 
is determined by Pythagoras’ theorem as follows:
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where r is the particle radius.
After the particle–wall collisions, the particle velocity becomes

	 u u c c u’ ( ) .p p pe= + −( ) ⋅




+1 	 (7)

To detect collision between a particle and the wall, the central position of the particle and the 
normal vector are obtained from the level set function. When the image point is appeared in 
the GC of the other object, the velocity and pressure components are defined by those of the 
nearest object.

3  RESULTS

3.1  Collision of a moving particle with a wall

To validate the present flow solver, the obtained flow structure around the particle–wall collision 
is compared with the experimental and numerical results of Eames et al. [6] and Vanella et al. [7]. 
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In this study, the flow quantities are normalized by the initial velocity of the particle and the 
particle diameter denoted as D. The computational mesh sizes are fixed at 0.05D (fine mesh) 
and 0.1D (coarse mesh), respectively. The computational domain is set to 10D ×10D ×10D.

Figure 2 shows the instantaneous vorticity distributions around the particle colliding with the 
wall. Panels (a) and (b) show the present results on the coarse and fine meshes, respectively. The 
distributions in the wake of the particle and between the particle and the wall are in good agree-
ment with previous results [6, 7]. The visualization like the adhesion between the particle and the 
wall has no effect on the flow phenomena. It is just because of the visualization for the object 
surface by using the isosurface of the level set function. Figure 3 shows the instantaneous vorticity 
distributions of the rebounding particle. Panels (a) and (b) show the present results on the coarse 

Figure 2: Vorticity distribution at the particle–wall collision

Figure 3: Vorticity distributions, at the collision of the particle with the wall (left images) and 
at the rebound of the particle (right images).
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and fine meshes, respectively. The wake vortex is broken by the rebound after the collision. 
The present distribution in the wake of the rebounding particles is in good agreement with 
previous result [7].

3.2  Collision of a multiple particles with a wall

The present flow solver is applied to the flow around multiple particles colliding with a wall. 
The Reynolds number is set to 400, based on the particle diameter and the relative velocity 
between the freestream and the particle during its impact with the wall. The grid size is fixed 

Figure 4: Flow distributions at t* = 40. The color map shows the velocity magnitude.
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at 0.1D. The computational domain is sized as 20D × 20D × 21D, and the wall is fixed at z = 1D 
location. The number of particles is set to 50, 100 or 200. All particles are assumed as same 
sized, hard steel particles with deformation. The initial position of the multiple particles is 
randomly located in the out of the computational domain. The two schemes are compared in 
this simulation; the two-way (A) and one-way (B) schemes. In the scheme (B), the initial flow 
condition is steady flow.

Figure 4 shows the instantaneous distributions of the velocity magnitudes at the center of 
the computational domain at nondimensional time t* = 40. In scheme (A), the flow structure 
becomes more complicated by the influences of the particles in the fluid. Furthermore, when 
the number of particles becomes large, the complexity is enhanced. On the other hand, in 
scheme (B), the flow distributions are steady because this scheme excludes the influence of 
the particles on the flow. Although the initial particle positions are same both scheme (A) and 
(B), the particle distributions are clearly different due to the effect of the interaction between 
the particle and the flows.

Figure 5 plots the number of particle–wall collisions as functions of particle number in 
scheme (A) and (B). The scheme (B) estimates larger number of collisions than the scheme 
(A). Moreover, the overestimation is enhanced with the increase of the particle number. In 
scheme (B), the particles move laterally because of the steady flows even in the vicinity of the 
wall. The steady flow without any wake vortex and the pressure recovery make the particles 
collide to the wall and each other.

4  CONCLUSIONS
Flows around multiple particles colliding with a wall are investigated by a three-dimensional 
flow solver based on IBM. The wake structures of the particle colliding with the wall showed 
the same tendency with previous studies. The differences between the two-way and one-way 
schemes were explored for multiple particles colliding with the wall. When the number of the 
particles becomes large, more complicated flow structure was observed in the two-way 
scheme since the one-way scheme could not accurately predict the flow. Consequently, the 
one-way scheme overestimated the number of collisions due to the steady flow without the 
influence of the particles on the fluid.

Figure 5: Number of collisions of the wall and the multiple particles. Red and blue plots are 
obtained in scheme (A) and (B), respectively.
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