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ABSTRACT
In this paper, we derive a boundary-domain integral formulation for the energy transport equation 
under the assumption that the fluid properties, through which the energy is transported by diffusion and 
convection, are spatially and temporally changing. The energy transport equation is a second- order 
partial differential equation of a diffusion-convection type, with the fluid temperature as the indepen-
dent  variable. The presented formulation does not require a calculation of the temperature gradient, thus 
it is, for a known fluid velocity field, linear.

The final boundary-domain integral equation is discretized using a domain decomposition approach, 
where the equation is solved on each sub-domain, while subdomains are joined by compatibility condi-
tions. The validity of the method is checked using several analytical examples. Convergence properties 
are studied yielding that the proposed discretization technique is second-order accurate.

The developed method is used to simulate flow and heat transfer of nanofluids, which exhibit 
 properties that depend on the solid particle concentration. A Lagrange-Euler approach is used.
Keywords: boundary element method, energy transport equation, nanofluids, variable material 
 properties. 

1 INTRODUCTION
Many natural phenomena involve energy transfer, which is governed by the diffusion and 
convection transport processes. In nature and for most engineering purposes, heat trans-
fer occurs in environments, where the velocity of the fluid changes within the domain in 
question. Fluid properties, such as density, specific heat and heat conductivity are usually 
considered as constant.

However, there are examples, where changes in fluid material properties must be consid-
ered. One example is a case, where large temperature differences are present in the simulation 
domain. Since material properties are temperature depended, these must be considered. 
Another example are nanofluids. These are suspensions of nanometer-sized particles in a 
base liquid. The properties of the suspension (when modeled as a single-phase liquid with 
modified properties) depend on the concentration of the particles, which in turn depends on 
the flow field.

Solution of the diffusion-convection partial differential equation is a challenging task. 
Many numerical algorithms have been proposed. In terms of the boundary element method 
by using the diffusion-convection fundamental solution, the problem can (at least for constant 
velocity field and constant coefficient) be described by pure boundary integral equations. 
This approach has been extensively studied in the past, where methods of solution have been 
proposed handling the problem up to very high Péclet numbers [1, 2].

To solve the problem of variable velocity, a decomposition of the velocity field into a 
constant and variable part has been proposed. The decomposition leads to a domain integral 
involving the variable part of the velocity field and the unknown field function. DeSilva et al. 
[3] used this approach to solve the transient conduction convection in 2-D. More recently, 
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several authors solved the diffusion-convection equations with variable coefficients [4]. 
Decomposition to constant and variable part has been used here as well.

Ravnik and Skerget [5, 6] proposed an alternative approach, where the gradient of the 
coefficient is needed and gradient of the field function is not needed. Thus, the final integral 
equation includes only the unknown function on the boundary and in the domain and its flux 
on the boundary. The proposed equation is linear and after discretization requires only a 
single solution of a system of linear equations to obtain the solution. In this paper, we have 
applied this method for the solution of the energy transport equation with variable material 
properties.

2 GOVERNING EQUATION
We consider a domain Ω with a boundary Γ filled with a fluid. Let 

�
r ∈Ω  denote the position 

in the domain and let t be the time. In the most general case, the fluid density, r r= ( , )
�
r t , depends 

on time and location. If the fluid velocity field is denoted by
� � �u u= ( , )r t , the mass conservation 

law requires that
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where the heat capacity c c r tp p= ( , )
�

, thermal conductivity k k r t= ( , )
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 and domain heat 
sources S r t( , )

�  all vary with time and location. Combining (1) and (2) one can show that the 
following is also true:
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This form of the energy transport equation is more convenient, as the density and heat capac-
ity are joined in all terms, and can thus be treated as a single material property.

3 DERIVATION
As the governing equation is an unsteady diffusion-convection equation with sources, a fun-
damental solution, which would enable a boundary only representation of the equation does 
not exist. Due to the fact that the material properties and the velocity field are expected to 
vary with location and time, we employ the fundamental solution for the diffusion operator, 
since in this way the integrals, that will be needed, will not depend on time, material proper-
ties or the velocity field, and will have to be calculated only once for a chosen computational 
mesh. Thus, eqn (3) is multiplied by u*, which is the fundamental solution for the diffusion 
operator

 u
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*
| |
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−
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4π ξ
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and intergrated over the domain yielding
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Using the following vector algebra rule: u k T u k T k T u∗ ∗ ∗∇ ⋅ ∇ = ∇⋅ ∇ − ∇ ⋅ ∇
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( ) ( )  we write

 

� � � �

� �

∇⋅ ∇( ) − ∇ ⋅∇

=

∂ ( )

∂

+∇⋅( )















∫∫ u k T d k T u d

c T

t
c Tv

p
p

* *Ω Ω
ΩΩ

ρ

ρ


− ∫∫ u d Su d* * .Ω Ω
ΩΩ

 (6)

The first domain integral on the left hand side of (6) may be transformed into a boundary 
integral using the Gauss divergence theorem as
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Using 
� � �
∇ = ∇ + ∇( )kT k T T k we rewrite the second integral on the left hand side of (6) as 
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Using 
� � � �
∇⋅ ∇ = ∇ ⋅∇ + ∇∗ ∗ ∗( ) ( )kT u kT u kT u2 we obtain
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The first domain integral on the left hand side may be transformed into a boundary integral 
using the Gauss divergence theorem as
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Since u* is the fundamental solution of the Laplace equation, the following integral equals 

kT u d k T∇ = −∫ 2

Ω
Ω* ( ) ( )

� �
x x  and we may write
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c( )
�
x  is the geometric factor defined as c( ) /

�
x p= α 4 , where α is the inner angle with origin 

in 
�
x . The temperature at the boundary T r( )

�
 or heat flux on the boundary q r T r n( ) ( )

� � � �= ∇ ⋅  
are prescribed as boundary conditions. 
Next, we used the following definition of divergence of a product 
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The first domain integral on the right hand side may be transformed into a boundary integral 
using the Gauss divergence theorem as
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The time derivative term is separated by
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to yield the final boundary-domain integral form of the energy equation with variable  material 
properties:
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4 DISCRETIZATION
At time t for a time step ∆t the backward Euler finite difference approximation is used to 
approximate the time derivative as
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We use domain decomposition to write the discrete system of equations. We make a mesh of 
the entire domain Ω and name each mesh element a subdomain. Then eqn (16) is written for 
each of the subdomains. We use shape functions to interpolate field functions and flux across 
the boundary and inside of the subdomain. A function, e.g., temperature, is interpolated over a 
boundary elements as T Ti i= ∑j , inside each subdomain as T Ti i= ∑Φ , while flux is inter-
polated over boundary elements as q qi i= ∑f . The following integrals must be calculated:
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The square brackets denote integral matrices. Each source point location yields one row in 
these matrices. The source point is set to all function and flux node in each subdomain. By let-
ting curly brackets denote vectors of nodal values of field functions, we may write the discrete 
energy equation as:
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The terms involving the unknown temperature values {T} may be summed up (in node by 
node sense) to form:
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The final step involves taking note of the boundary conditions and setting up the system 
matrix accordingly. Either temperature {T} or flux {q} may be prescribed. The final system 
is linear as long as the material properties, flow velocity and sources do not depend on tem-
perature. If they do, an iterative scheme must be set up which involves repeated solutions of 
the system along with updating of the material properties, flow velocity and sources.

5 TEST CASES
In order to verify the validity of the derivation and implementation, we performed extensive 
tests. We chose a cubical domain (0,0,0) × (1,1,1) where an incompressible fluid flows with a 
velocity field 

�
v x y z= −( , , )2 . We consider two cases, A and B, which both feature variable mate-

rial properties in the domain. Additional parameter, k, was introduced to adjust the magnitude 
of variation of material properties. Heat sources were added to the domain so that the resulting 
temperature solution was Ta = xyzt. Material parameters and sources are listed in Table 1.

A combination of Dirichlet and Neumann boundary conditions was used. Two opposite 
facing walls had a known temperature prescribed, while the other four walls of the cubi-
cal domain had a known heat flux prescribed. The domain and the boundary conditions are 
shown in Fig. 1. The temperature field was initialized using the analytical solution at t = 0 
as T = 0. The solution was advanced through time using a time step of ∆t = 0.01 until t = 1, 
when the results are analyzed.

The meshes chosen to solve the two tests had 23, 43, 83, 163, 323 hexahedral elements with 
53, 93, 173, 333, 653 nodes. The nodes were placed equidistantly in the domain, so the element 
sizes were h = 0.200, 0.111, 0.058, 0.030, 0.015.

In order to compare the simulation results with analytical values, a root- mean-square 
norm, 
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Table 1:  Material properties and source for the test cases solved. An additional parameter k 
is used to increase the severity of spatial and temporal changes in material param-
eters. κ = 1, 2,4 were considered.

case rcp k S

A
B

1
1 + xκ

2 + cos (κπxyz) 
1+ zκ

xyz + πt(y2z2 + x2(y2 + z2))κ sin (πxyzκ)  
xy(-tzκ-1

κ + z(1 + xκ (l +tκ)))



 J. Ravnik, et al., Int. J. Comp. Meth. and Exp. Meas., Vol. 5, No. 3 (2017) 343

has been used. Here, i sums values from nodes inside of the domain (boundary conditions are 
skipped) so Th,i are the nodal values obtained on a mesh with element size h.

The norms for both test cases are shown in Fig. 2. We observe good convergence of results, 
accuracy increases when element size decreases. Three values of the parameter κ = 1, 2, 4 
were used. Since larger k corresponds to stronger spatial and temporal variation of material 
parameters, we observe lowering of accuracy with increasing k.

Figure 1:  The domain and a vector based visualization of the flow field. Boundary conditions 
are also shown.

Figure 2:  Norms expressing the difference between simulation and analytical results. Second-
order convergence slope is also shown.
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Since the element sizes decrease by a factor of 2 it is possible to employ the Richardson 
extrapolation to estimate the order of the proposed method. The method’s order is defined as

 O
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=
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−






1

2
2

log
log

|| ||

|| ||
./  (21)

A slope, which corresponds to second-order accuracy, is shown in Fig. 2. We observe that the 
norms for both cases exhibit convergence slopes which are comparable to the second-order 
slope. Equation (21) was used to calculate the method’s order using all available results.  
We obtained O = 1.996 ± 0.46, which clearly indicates that the developed method is sec-
ond-order accurate.

6 APPLICATION TO NANOFLUID SIMULATION
A nanofluid is a stable suspension of nanometer-sized particles suspended in a fluid. A typical 
application of nanofluid is an enhancement of heat transfer, thus particles are usually metal 
oxides having better heat transfer properties than the base fluid.

Consider nanoparticles distributed in the fluid. Local concentration of nanoparticles is

 c r
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( )
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�
�
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where N r( )
�

 is the number of nanoparticles in a local volume V r( )
�

 around a location 
�
r . 

As nanoparticles are extremely small, it is impossible to simulate a number large enough to 
account for the actual concentration. Thus, a small number of particles it tracked (e.g. 105), 
which represent a fraction of the bulk volume fraction.

We estimate the particle volume fraction as
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where j
0
 is the bulk solid nanoparticle volume fraction and j' is the magnitude of an oscillat-

ing part, which is estimated by Lagrangian tracking of individual particles.
As the flow field transports the particles the changes in the local volume fraction are 

reflected in spatial and temporal changes of heat conductivity, heat capacity, and density of 
the nanofluid. In order to properly estimate the heat transport, a transport equation with vari-
able material properties, such as eqn (3) must be solved.

Nanoparticles have a very low Stokes number, thus they follow the fluid flow closely. 
However, due to their small size they also exhibit Brownian motion due to constant molec-
ular bombardment. Moreover, in cases where the temperature gradient is present, the higher 
momentum of warmer fluid molecules giver rise to the thermophoresis effect. Thermophore-
sis is the result of averaged Brownian motion in a fluid.

The thermophoresis effect has been studied in gases by Epstein [7] who developed a model 
for the average velocity of the particle due to thermophoresis. This was corrected for the 
use in liquids by McNab and Meisen [8], who have shown, that thermophoresis is slower in 
liquids. Recently, Michaelides [9] realized that thermophoretic velocity depends strongly on 
fluid and nanoparticles type, so he performed Monte-Carlo simulations to provide estimates 
for several common nanofluids. According to this results aluminum oxide—water nanofluid 
has the following thermophoretic velocity
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where r is the nanoparticle radius and r0 = 1nm. The thermophoretic force is then calculated 
by 
� �
F dvtb f tb= 3pm . Finally, the movement of particles may be estimated by
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r t t r t v r v tf tp( ) ( ) ( ( ) ) ,+ = + +∆ ∆  (25)

where 
� �
v rf ( )  is the velocity of the fluid at the position of the nanoparticle.

The solution of the energy equation and the Lagrangian particle tracking were included 
in our in-house BEM-based nanofluid flow and heat transfer solver [10]. A standard natural 

Table 2:  Simulation of heat transfer of Al2O3 nanofluid in a 3D cubic cavity with differen-
tial heated walls. Heat transfer through a heated wall is shown expressed with a 
Nusselt number as a function of the Rayleigh number (Ra). Average solid particle 
volume fraction was j0 = 0.1. In the study [11] nanofluid properties were esti-
mated using the average solid particle volume fraction and were assumed constant 
in space and time.

Ra [11] Present Ra [11] Present

103 1.345 1.345 105 4.806 4.905

104 2.168 2.179 106 9.817 10.15

Figure 3:  Heat transfer though a vertical wall expressed as Nusselt number versus time for 
four different Rayleigh numbers.
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convection test case was solved—an insulated cubic cavity with two opposite walls heated 
and cooled [11] using a 173 node mesh. A Al2O3 nanofluid was considered.

Table 2 shows the comparison of the time averaged heat fluxes and Fig. 3 shows time 
traces of heat flux. While looking at the time traces, we observe small oscillations of heat flux 
due to variations in nanofluid properties. The oscillations increase in magnitude as the Ray-
leigh number is increased. This is due to the fact that bouyant forces increase with Rayleigh 
number, and thus the flow field in the cavity is more complex which in turn results in higher 
variation of particle concentration. The time average values of the Nusselt match reference 
results for low Rayleigh numbers, while at higher Rayleigh number values, the variations in 
nanofluid properties yield a slightly lower heat transfer rates.

7 SUMMARY
The paper presents a boundary element based numerical method for the solution of the energy 
transport equation, when the fluid properties (density, specific heat, thermal conductivity) 
exhibit spatial and temporal variations. Examples of such fluids are nanofluids, which are 
stable suspensions of nanoparticles in a base fluid. Since the concentration of nanoparticles 
varies with the fluid flow, the average properties of a nanofluid, when modeled as a single 
phase, vary with location and time.

The derived boundary-domain integral formulation (eqn 14) does not include the gradient 
of the temperature field. For a known flow velocity field, this enables finding the unknown 
temperature field using a single solution of the discrete system of linear equations. The 
proposed method was verified by analytical test cases and was found to be second-order 
accurate. Furthermore, we used the developed method in a Lagrange-Euler model for nano-
fluid simulation.

REFERENCES
 [1] Skerget, L., Zagar, I. & Alujevic, A., Three-dimensional steady-state diffusion-convec-

tion. In Boundary Elements IX, 3, Springer: Berlin, 1987.
 [2] Qiu, Z.H., Wrobel, L. & Power, H., Numerical solution of convection-diffusion prob-

lems at high Peclet number using boundary elements. International Journal for Numer-
ical Methods in Engineering, 41, pp. 899–914, 1998.
http://dx.doi.org/10.1002/(SICI)1097-0207(19980315)41:5<899::AID-NME314>3.0.CO;2-T

 [3] DeSilva, S.J., Chan, C.L., Chandra, A. & Lim, J., Boundary element method analysis 
for the transient conduction convection in 2-D with spatially variable convective veloc-
ity. Applied Mathematical Modelling, 22(12), pp. 81–112, 1998.
http://dx.doi.org/10.1016/S0307-904X(98)00010-9

 [4] Rap, A., Elliott, L., Ingham, D.B., Lesnic, D. & Wen, X., DRBEM for Cauchy convec-
tion-diffusion problems with variable coefficients. Engineering Analysis with Boundary 
Elements, 28(11), pp. 1321–1333, 2004.
http://dx.doi.org/10.1016/j.enganabound.2004.06.003

 [5] Ravnik, J. & Skerget, L., A gradient free integral equation for diffusion - convection 
equation with variable coefficient and velocity. Engineering Analysis with Boundary 
Elements, 37, pp. 683–690, 2013.
http://dx.doi.org/10.1016/j.enganabound.2013.01.012

 [6] Ravnik, J. & Skerget, L., Integral equation formulation of an unsteady diffusionconvec-
tion equation with variable coefficient and velocity. Computers and Mathematics with 
Applications, 66(12), pp. 2477–2488, 2014.
http://dx.doi.org/10.1016/j.enganabound.2013.01.012



 J. Ravnik, et al., Int. J. Comp. Meth. and Exp. Meas., Vol. 5, No. 3 (2017) 347

 [7] Epstein, P., Zur theorie des radiometers. Zeitschrift fur Physik, 54, pp. 537–563, 1929.
http://dx.doi.org/10.1007/BF01338485

 [8] McNab, G.S. & Meisen, A., Thermophoresis in liquids. Journal of Colloid and Inter-
face Science, 44(2), pp. 339–346, 1973.
http://dx.doi.org/10.1016/0021-9797(73)90225-7

 [9] Michaelides, E.E., Brownian movement and thermophoresis of nanoparticles in liquids. 
International Journal of Heat and Mass Transfer, 81, pp. 179–187, 2015.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2014.10.019

[10] Ravnik, J. & Skerget, L., A numerical study of nanofluid natural convection in a cubic 
enclosure with a circular and an ellipsoidal cylinder. International Journal of Heat and 
Mass Transfer, 89, pp. 596–605, 2015. 
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.05.089

[11] Ravnik, J., Skerget, J. & Hribersek, M., Analysis of three-dimensional natural convec-
tion of nanofluids by BEM. Engineering Analysis with Boundary Elements, 34, pp. 
1018–1030, 2010.
http://dx.doi.org/10.1016/j.enganabound.2010.06.019


