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ABSTRACT
For the analysis of cracks in three-dimensional isotropic thermoelastic media, a temperature and displace-
ment discontinuity boundary element method is developed. The Green functions for unit-point temperature 
and displacement discontinuities are derived, and the temperature and displacement discontinuity bound-
ary integral equations are obtained for an arbitrarily shaped planar crack. Our boundary element method is 
based on the Green functions for a triangular element. As an application, elliptical cracks are analyzed to 
validate the developed method. The influence of various thermal boundary conditions is studied.
Keywords: boundary element method, boundary integral equation method, displacement and tempera-
ture discontinuity, Green function, isotropic thermoelastic medium, planar crack, stress intensity factor, 
thermal boundary condition, triangular element.

1  INTRODUCTION
Much research has been conducted in the analysis of cracks in thermoelastic materials using 
analytical or numerical methods [1–4]. Because solving complicated practical problems 
analytically is difficult, numerical methods are needed. Among the various numerical meth-
ods, the boundary element method is very convenient and efficient in such analyses, and 
many studies have adopted this method to analyze crack problems in thermoelastic media 
[2–4]. Furthermore, the subsequent displacement discontinuity boundary integral equation 
and boundary element method are more efficient in studying crack problems, as they grasp 
the basic characteristic of crack problems; specifically, fields are discontinuous across crack 
faces. The displacement discontinuity method was first proposed by Crouch [5] to study 
two-dimensional crack problems, and was then extended to three-dimensional elastic media, 
piezoelectric media, and magnetoelectroelastic media [6–9], where the electric and mag-
netic potential discontinuities were introduced across crack faces. Based on previous work, 
this paper develops the temperature and displacement discontinuity boundary integral equa-
tion and boundary element method for which the temperature distribution across the crack 
faces is assumed discontinuous. The Green functions for unit-point temperature and dis-
placement discontinuities are derived, and the temperature and displacement discontinuity 
boundary integral equations are obtained for an arbitrarily shaped planar crack. The singular 
fields ahead of the crack front are discussed, and the stress intensity factors are obtained. 
For numerical simulations, the Green functions for a triangular element are obtained, and an 
elliptical crack is analyzed to validate the correctness of the analytical solution and the pro-
posed numerical method. The influence of the temperature and different thermal conditions 
are also discussed.
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2  TEMPERATURE AND DISPLACEMENT DISCONTINUITY BOUNDARY 
INTEGRAL EQUATION METHOD

2.1  Boundary integral equation

Consider an arbitrarily shaped planar crack S located in the plane z = 0. The upper and lower 
crack surfaces are denoted S+ and S−, respectively. Their respective outer normal vectors of 
S+ and S− are respectively given by

	 ni{ } = −{ }+S
0 0 1, , , ni{ } = { }−S

0 0 1, , .	 (1)

A crack problem can be regarded as a combination of two problems: a no-crack problem 
under applied loadings and a perturbed problem with loadings only applied on crack faces. 
The first problem is analyzed to obtain the tractions and heat flux on the crack faces in the 
perturbed problem, which usually satisfy

	 p p p x yi S i S i+ −
= − = ( , ), h h h x yn S n S

n+ −
= − = ( , ),	 (2)

where

	 p n h h ni ij j n i= =σ , ,	 (3)

and the overbar denotes the prescribed boundary conditions.
Because of the presence of the crack, the displacement and temperature across crack sur-

faces are discontinuous and expressed as

	 u u uj j j= ( ) − ( ) = ( ) − ( )
+ − + −S S S S, ,θ θ θ 	 (4)

where ||ui||(u1=u, u2=v, u2=w) and ||q || denote respectively the displacement discontinu-
ity and temperature discontinuity across the crack faces. Using the integral equation 
method in Zhao et al. [7], the Green functions for unit-point discontinuities are obtained. 
For simplicity, the final expressions of the Green functions are omitted. Based on the 
Green functions and the superposition principle, the stresses and heat flux of an arbitrary 
field point can be obtained in terms of the temperature and displacement discontinuities 
across crack faces. As the field point approaches the crack face, the integrals become 
hyper-singular. After using the finite-part integrals and some algebraic mathematical 
manipulations, one can obtain the boundary integral equations for an insulated arbitrarily 
shaped planar crack: [8]
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where

	 r x y= −( ) + −( )ξ η
2 2

, cos /ϕ ξ= −( )x r , sin /ϕ η= −( )y r .	 (6)

Equation (5) shows that the displacement discontinuity in the normal direction of the planar 
crack and the temperature discontinuity are decoupled from the in-plane displacement dis-
continuities in the boundary integral equations, eqns (5a)–(5d). Moreover, each is governed 
by its own equation and related only to its corresponding applied loading. However, the two 
in-plane displacement discontinuities are coupled with the temperature discontinuity in the 
other two boundary integral equations. In these singular equations, there are two types of 
singularities: the hyper-singularity O(1/r2) associated with the two in-plane displacement dis-
continuities and the strong singularity O(1/r) associated with the temperature discontinuity.

2.2  Singular fields near the crack front

The method to analyze the singular stress and heat flux fields near the crack front is similar 
to that in [8]; the details are omitted for brevity. After analysis, it is clear that the temperature 
and displacement near the crack front have a classical singularity of r1/2. Consequently, the 
stresses and heat flux near the crack front are also obtained, after substituting into the defi-
nition for the intensity factors, one derives expressions for the stress and heat flux intensity 
factors in terms of the temperature and displacement discontinuities:
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3  TEMPERATURE AND DISPLACEMENT DISCONTINUITY BOUNDARY 
ELEMENT METHOD

3.1  Green functions for a constant triangular element

Consider an arbitrarily shaped triangular crack element on the oxy plane in an infinite thermo-
elastic medium. The three apices of the triangle are denoted A(x1,y1), B(x2,y2) and C(x3,y3), 
respectively.

On the element, uniformly distributed temperature discontinuity ||q ||e and displacement 
discontinuities ||u||e, ||v||e, ||w||e are applied. After integrating the fundamental solutions for 
unit-point displacement and temperature discontinuities on the triangular element, the associ-
ated Green functions are:
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Detailed expressions for the influence functions Fij and F3 can be found in Zhao et al. [8].

3.2  Temperature and displacement discontinuity boundary element method

An elliptical crack is studied for simplicity. It is first discretized into N triangular elements 
(Fig. 1). On each element the displacement and temperature discontinuities are assumed con-
stant for convenience. Using the Green functions for a constant triangular element obtained 
above and the superposition principle, one can obtain the following algebraic equations
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where i = 1,2,3,…,N. There are a total of 4N equations and corresponding 4N unknown 
discontinuities for the whole crack. After solving these linear algebraic equations, one can 
obtain the discontinuities for each triangular element. The displacements, stresses, tempera-
ture, and heat flux at any point can all be determined.

As for the determination of the stress intensity factors, three points in front of the crack tip 
are used to fit the approximate expressions,
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where χ  with different subscripts denotes the fitting coefficients, and r is the distance from 
the point to the crack tip. Substituting eqn (10) into eqn (7), the intensity factors are thereby 
determined.

Figure 1: An elliptical crack discretized by triangular elements.
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3.3  Iterative approach for the heat flux in the crack cavity

The integral equation in eqn (5d) is for an insulated crack. However, if the effect of the 
medium inside the crack is to be more realistic, the thermal semi-permeable boundary condi-
tion must be adopted, and eqn (5d) becomes

	 − = − +∫
β

π

θ

4

1
3r

dS h hz
c

S
,	 (12a)

with

	 h wz
c c
= −β θ / ,	 (12b)

where bc denotes the thermal conductivity of the medium inside the crack. Similar to Fan 
et al. [9], an iterative approach is proposed to determine the heat flux at an arbitrary point in 
the crack.

First, the crack model is assumed insulated; specifically hz
c
= 0. After using the bound-

ary element method, we obtain the corresponding crack opening displacement discontinuity 

w r
1( )
( ) and temperature discontinuity θ

1( )
( )r  at an arbitrary point. Second, by substitut-

ing the value of the discontinuities into the determining eqn (12), we obtain a new heat flux 

h rz
c 1( )
( ) in the crack cavity,

	 h r w rz
c c1 1 1( ) ( ) ( )

= − ( ) ( )β θ / ,	 (13)

Inserting the new h rz
c 1( )
( ) into eqn (12) and beginning a new calculation, one obtains new 

discontinuities. As was mentioned earlier, the convergence criterion for the iteration to stop is 
that the value of the heat flux in the crack cavity remains the same (specifically, the difference 
in the two new heat fluxes is sufficiently small). In numerical simulations, if the convergence 
criterion satisfies a preset precision threshold δ, the iteration is stopped, i.e.,

	 h r h rz
c k

z
c k( ) −( )

( ) − ( ) <
1

δ .	 (14)

The value of the heat flux in the crack cavity is the final result, h r h rz
c

z
c k

( ) = ( )
( ) .

4  NUMERICAL RESULTS AND DISCUSSION

4.1  Validation of the solution and numerical method

In this section, the proposed method is first checked. The thermoelastic medium aluminum is 
chosen for the simulation, and its material properties being

	
E v= × =
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Uniform loadings are applied to the crack face
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	 p p p p h hx y z n= = = =0, , .	 (16)

If the elliptical crack is assumed to be insulated and is reduced to penny-shaped, the numer-
ical results can be compared with the analytical solutions given by Florence and Goodier 
[1]. Figures 2 and 3 plot the distribution of the displacement in the radial direction and tem-
perature discontinuities, respectively. The numerical results are in perfect agreement with 
the analytical solution. As for the stress intensity factor KII, the relative error is only 0.45% 
between the numerical results and the analytical solution.

4.2  Influence of different thermal boundary conditions

In this section, the influence of the thermal boundary condition is studied. The final value 
of the heat flux in the crack cavity should be determined at first. Figure 4 plots the variation 

Figure 3: Distribution of temperature discontinuity.

Figure 2: Distribution of radial displacement discontinuity.
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of the heat flux in the cavity versus the iteration number. The value of the heat flux clearly 
converges and remains constant after 30 steps in the iteration.

Figures 5 and 6 plot the elliptical ratio dependence of the normalized mode II stress intensity 
factor and heat flux intensity factor, respectively, for the major and minor axes under different 
thermal conditions. The value of the intensity factors at the major axis tip are smaller than 
those at the minor axis tip; this indicates that the elliptical crack is more inclined to extend 
and grow circularly in the minor axis direction with the facture occurring more easily at the 
minor axis tip. The value of the intensity factors under thermal semi-permeable condition is 
smaller than those under thermal insulated conditions, regardless whether it is the major or 
minor axis tip. In summary, the intensity factors under thermal semi-permeable conditions 
are smaller than those under thermal insulated conditions. As thermal semi-permeable condi-
tions are more realistic, engineering designs based on fracture criteria for thermally insulated 
condition tend to be conservative.

Figure 4: Heat flux in the crack cavity versus the iteration number.

Figure 5: Second stress intensity factor versus the elliptical ratio.
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5  CONCLUDING REMARKS
The displacement discontinuity method was adopted and extended by introducing the tempera-
ture discontinuity to analyze planar cracks in three-dimensional isotropic thermoelastic media. 
The Green functions for unit-point discontinuities are obtained and employed to construct 
the temperature and displacement discontinuity boundary integral equations for an arbitrarily 
shaped planar crack. The singularities of the fields near the crack front are analyzed, and the 
stress and heat flux intensity factors are expressed in terms of temperature and displacement 
discontinuities across crack faces. In numerical simulations, the Green functions for a constant 
triangular element are derived, based on which the temperature and displacement discontinuity 
boundary element method was proposed. An iterative approach is also proposed to determine 
the value of the heat flux in the crack cavity for thermal semi-permeable conditions. From the 
results, it is concluded that the proposed method is in perfect agreement with the analytical 
solution, and that the influence of the thermal conditions cannot be ignored.
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