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ABSTRACT
A decarbonisation of the energy system is necessary to reduce greenhouse gas emissions and thus 
achieve the climate protection goals. For this reason, the renewable energy share in the power grids of 
many countries is increasing. In order to stabilize the energy system and increase its flexibility, energy 
management systems are needed. This paper offers a model of energy management system which starts 
from the network operator and ends at the consumer (an electric vehicle). Firstly, a controllable local 
system signal, which is sent through a smart meter gateway from the grid operator to the consumer, has 
been developed. The signal is based on the renewable energy share in the local grid, on the electricity 
exchange price and on a defined profile. Then, different charging modes, which regulate the energy 
consumption based on the signal, have been developed and field tested. Finally, the charging modes 
have been simulated in order to better compare the data. The results show that with smart charging, 
90% of the energy demand can be rescheduled. In view of the load shifting, greenhouse gas emissions 
and energy costs can be reduced.
Keywords: electric vehicles, energy management systems, load shifting, renewable energy, smart grids.

1 INTRODUCTION
The Paris Agreement on climate change confirmed the need to reach close to zero greenhouse 
gas (GHG) emissions by the second half of the century [1]. To achieve these goals, a rapid, 
almost full-scale decarbonisation of the power supply is required [2, 3]. Therefore, many 
countries have planned to cover the energy demand with renewable energy (RE) [4–7]. In 
Germany, the official target is to provide more than 50% of electricity from RE sources by 
2030 and at least 80% by 2050 [8]. However, introducing RE in large amounts to the power 
system presents some challenges. In traditional power systems, the balance between power 
demand and supply at each point of time is maintained through fossil-fuel power plants. REs 
such as wind and solar instead are variable, consequently there can be a mismatch of power 
supply and demand and this can lead to an unstable power network [9, 10]. Furthermore, 
there can be an imbalance between the locations of power supply and demand. In Germany, 
for example, wind farms are mostly installed in the northern part of the country and on the 
coast, but the biggest industry is in the southern and western part of the country [11]. To 
balance the supply/demand mismatches and overcome energy distribution issues, the energy 
system flexibility has to increase. An important approach to increase energy system flexibility 
is considering the energy system as a whole and thus integrating the electricity, the heat and 
the mobility sectors together. Moreover, sector coupling has to be supported by energy man-
agement systems (EMS), which can provide the required stability [12, 13].

EMS comprise a broad set of means to affect the patterns and magnitude of energy supply 
and demand. An application of EMS is demand-side management (DSM) system, which 
controls the end-use electricity consumption, reducing (peak shaving), increasing (load 
growth) or rescheduling (load shifting) energy demand. DSM allows ample flexibility and 
can be 100% efficient, as no energy conversion to and from an intermediate storable form is 
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required [14]. The application of DSM, as a form of standing reserve could improve the sys-
tem performance by increasing the amount of power from RE, which can be absorbed. This 
is particularly relevant when high RE conditions coincide with low demand. In this context, 
DSM would allow more RE to be absorbed and would, therefore, reduce the GHG emissions 
[15]. DSM systems and smart appliances can facilitate the user to shift electricity demand of 
devices in domestic area. A study shows that smart appliances are a promising strategy for 
households to shift their electricity demand depending on price signals [16]. However, before 
demand systems can be effectively deployed on a wide scale in the residential sector, a num-
ber of technical challenges need to be resolved (infrastructure of communications, metering 
infrastructure, etc.). House DSM can rely on technologies which automatically respond to 
signals and taken into consideration the homeowner’s preferences and expectation [14]. This 
work gives a model of house DSM, which automatically responds to a signal transmitted 
from the grid operator. The house DSM system can control the electricity consumption of 
electric vehicles (EVs) or of electric heating systems such as heat pump, hybrid heating or 
thermal storage heating.

Prior research demonstrates that EVs have a great shifting potential since the charging 
process can be curtailed for significant periods of time (e.g., several hours) without impact on 
end-use function [17, 18]. Load shifting is particularly important for EVs as they are greatly 
dependent on the electricity generation mix, which is used for charging them [19]. Many 
charging systems have been already developed [20–23] and it is proved that with smart charg-
ing, the consumption of RE can be more than doubled compared to uncoordinated charging 
[24]. Consequently, charging management systems contribute to balancing the generation 
and consumption of electricity from RE sources and help to avoid peak demand and thus 
stress the grid [25, 26].

In this work, firstly a special signal for the communication between grid operator and end-
user through the metering infrastructure has been created. Secondly, different charging 
managements that respond to the signal have been developed and field tested at a Wallbe 
charging station with an electric car BMW i3 (22 kWh). Then the relevant data have been 
recorded and analysed. Finally, each charging process has been simulated with the different 
charging modes, in order to better compare their distinctions. The procedure and the results 
will be dealt with in this paper.

2 CLS SIGNAL
A controllable local system (CLS) signal has been developed for the communication between 
a local grid operator and the house DSM. The CLS signal is sent from the local grid operator 
and is designed to be transmitted through a smart meter gateway (SMGW) to the end con-
sumer. The SMGW is connected to a CLS control box. On this control box, there are several 
relays, which can be switched according to the transmitted CLS signal. These kinds of devices 
are currently under development and for this work, it was possible to use a CLS control box 
with four relays. These four relays are switched according to the current CLS signal, which 
is in this way transmitted to the consumer. This type of SMGW can transmit only the current 
CLS signal and not its forecast. Thus, it can be used only by simple consumers, which use 
controlling algorithms without forecast. Smart consumers need the forecast of the CLS signal 
also to better program their energy consumption. Since the SMGW used in this work is not 
able to transmit the forecast of the CLS signal, this is transmitted directly through the Inter-
net. However, in the future, with further developed devices, the CLS signal will be transmitted 
only through the SMGW. Both transmission paths were established and operated in coopera-
tion with the local grid operator.
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The CLS signal is based on three parameters:

•  the consumer profile, which depends on the type of the consumer (EV, heat pump, hybrid 
heating, thermal storage heating, etc.)

 • the share of RE in the power system [27–29], which also depends on the consumption  
[30, 31]

•  the electricity price at the European Energy Exchange [32, 33].

These three parameters can be different for every consumer and they can have the value 
one or zero. Every consumer can have a different profile, which indicates in which hours of 
the day it should better consume energy. This profile allows the grid operator to schedule the 
consumption hours of the different consumers in order to avoid peak demand. The parame-
ter of the consumer’s profile has the value one if the appliance should consume energy and 
the value zero if it should not. For the tested EV, this parameter has the value one mostly 
during the night since the EV is usually plugged in after the working time (between 7 p.m. 
and 5 a.m.). The parameter of the percentage of RE in the power system has the value one if 
more than a defined percentage (e.g. 60%) of the electricity is generated from renewable 
sources. The parameter of the price has the value one when the intraday price is lower than 
the daily average price. During the development of this work, it has been proved that the 
exchange electricity price is correlated to the percentage of RE in the power system. Due to 
this correlation, the parameter of the price contributes to the consumption of RE. The CLS 
signal is based on the combination of these three parameters and it works like a traffic light. 
If all the three parameters have the value one, the CLS signal is green. If at least two param-
eters have the value zero, the CLS signal is red and if some have the value one and some 
have the value zero, the CLS signal is yellow. In the case the special regulation (§14a EnWG 
[34]) of the grid operator occurs, the CLS signal is black. An example of CLS signal for one 
day is illustrated in Fig. 1.

3 CHARGING MANAGEMENT SYSTEM
The CLS signal is sent to the end device of the house EMS, which regulates the energy con-
sumption. In this paper, an EV is taken as an example of end device. Therefore, different 
algorithms for the charging process of the EV have been developed. In this chapter, the three 
charging modes, which can regulate the electricity consumption of the EV, are described.

3.1 Charging mode Normal

The simplest charging mode is the charging mode Normal. This corresponds to the unman-
aged charging, which is currently used for charging most EVs. The charge starts as soon as 
the EV is plugged in. At the beginning, the EV is charged constantly with the maximum 
current power. When a certain voltage limit is reached, the charge continues with decreasing 

Figure 1: CLS signal.
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current until the battery is fully charged. For this charging mode grid load, electricity costs 
and share of RE in the power grid are not considered.

3.2  Charging mode Simple

The charging mode Simple has been developed for simple devices. For this charging mode, 
the current CLS signal is transmitted to the end device, namely the charging station, through 
the SMGW. According to the CLS signal, the charging station or the heating system regulates 
the power intensity with which the EV is charged or the house is heated. Considering the EV, 
if the CLS signal is green, the EV is charged with the maximum allowed power. If the CLS 
signal is yellow, the current power is reduced to 60% of the maximum power. If the CLS 
signal is red, the EV is charged with 30% of the maximum power. In case the CLS signal is 
black, the charging process is stopped, as shown in Fig. 2. A similar process is applicable to 
heating systems.

With the charging mode Simple, the charging process is not scheduled according to the 
forecast of the CLS signal, but it starts directly when the EV is plugged in. Additionally, there 
is a risk that the EV is not charged enough by the departure time. To better explain this issue, 
an example can be taken of an EV which is just for a short period of time at the charging 
station (referring to Fig. 2 from 5 p.m. until 9 p.m.) and during this period, the CLS signal is 
red or yellow. In this case, the EV is charged with a low power and thus it can happen that it 
will not be charged enough for the next drive.

3.3  Charging mode Smart

The charging mode Smart has been developed in order to increase the energy demand, namely 
to charge the EV as much as possible when the CLS signal is green, consume less when it is 
yellow and possibly decrease the demand when it is red. If the CLS signal is black, no elec-
tricity can be consumed, consequently the charging process is stopped. Moreover, with this 
charging mode, there is a guarantee that the EV is charged enough by the time of departure. 

Figure 2: Charging mode Normal, Simple and Smart.



 M. Schaffer, et al., Int. J. of Energy Prod. & Mgmt., Vol. 7, No. 2 (2022)  105

To achieve this purpose, data such as departure time, current state of charge and desired min-
imum range are needed. These data have to be provided by the user, who has to enter them on 
a webpage before plugging the EV. The webpage has been developed for this work and it has 
been specially designed for the data input purpose. Additionally, previous data from the 
charging process and the CLS signal forecast are needed. With the current state of charge and 
the desired minimum range, the algorithms calculate first of all how much energy has to be 
charged, considering previous data of the charging process. Then, the charging schedule can 
be computed. If the CLS signal is green from the time of arrival until the time or departure, 
the EV is charged with the maximum power until the battery is fully charged. If this cannot 
be achieved, at least the desired minimum range is charged. If the time when the CLS signal 
is green is not enough even to charge the minimum range, the EV has to be charged also when 
the CLS signal is yellow. The power of the charging station when the CLS signal is yellow is 
the minimum power necessary to charge the minimum range by the departure time, as shown 
in Fig. 2. If this one is still not enough, according to the same principle as before, the EV is 
charged also when the CLS signal is red.

The three charging modes have been field tested on a Wallbe-Wallbox charging station 
for 9 months. During this period, 2.5 MWh of electricity have been consumed to charge the 
EV, which has covered around 15,000 km. During the first two months of the test phase, the 
charging station has been managed with the charging mode Normal. Later, the charging 
mode Simple has been tested for two months and in the last five months of the test, the 
charging station has been managed with the charging mode Smart. Each charging mode has 
been tested in different periods of the year. However, in every season, the weather condi-
tions change and, as a consequence, the share of RE in the network, the energy consumption 
and the energy price are different. Hence it is not possible to compare the measured data of 
the charging mode Normal, which has been tested in summer with those of the charging 
mode Smart, which has been tested in winter, because the results would be imprecise. 
Therefore, a method for comparing the charging process of the three different charging 
modes is needed.

4 METHOD FOR COMPARISON
For a better comparison of the data of the three different charging modes, a simulation of the 
charging process has been developed. The simulation is based on the collected data of the 
charging station and on the data obtained by the user from the website. There are no data 
collected through communication with the EV. This is important because the charging modes 
should work for any kind of EV and any charging station. During the first two months, the 
charging mode Normal has been tested and its data were recorded. Consequently, for these 
months, a simulation of the charging modes Simple and Smart is needed. According to the 
same principle, when the charging mode Simple has been tested, the mode Normal and Smart 
have been simulated. In the last five months, the mode Smart has been tested and the Normal 
and Simple mode have been simulated. To prove the validity of the simulations, the measured 
data of each charging mode have been compared with the corresponding simulated data, as 
shown in Fig. 3. For the comparison, firstly the absolute error, i.e. the difference between the 
measured and the simulated data, has been calculated.

Secondly, with these data the relative error has been determined and it was possible to 
estimate the mean relative error of every single charge. Finally, the mean of the relative error 
of each charge has been determined and its value is 2%. From this result, it can be concluded 
that the error of the simulation is negligible, thus the simulation can be validated and used for 
further data processing.
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Figure 3: Measured data, simulated data and absolute error of the three charging modes.

5 RESULTS
In this section, the results of the measured and simulated data are explained.

5.1  Load shifting

The three charging modes Normal, Simple and Smart have been simulated for each charge of 
the EV. With the simulation of every charging mode, it can be determined how much energy has 



 M. Schaffer, et al., Int. J. of Energy Prod. & Mgmt., Vol. 7, No. 2 (2022)  107

been charged when the CLS signal is green, yellow and red. As explained in Section 3: Charg-
ing management system, and as shown in Fig. 2, the charging process of the EV can be regulated 
and scheduled. This means that the load, which would be charged directly after the EV is 
plugged in without charging management, can be rescheduled to another period of time with the 
developed charging management systems. In this way, the load shifting can be calculated. 
Referring to the example in Fig. 2 of Section 3: Charging management system, Fig. 4 shows 
how much electricity has been consumed during this single charge when the CLS signal is 
green, yellow and red with the three different charging modes. With this kind of calculation, it 
is possible to evaluate the amount of load, which can be shifted for each charging mode. With 
the mode Normal, the EV is charged 13.6 kWh when the CLS signal is red and 4.7 kWh when 
it is yellow. With the mode Simple, the energy charged when the CLS signal is red was reduced 
to 7.2 kWh and the energy charged when the CLS signal is yellow was increased to 10.1 kWh. 
This means, that 5.4 kWh of the total 18.3 kWh have been shifted from the time when the CLS 
signal is red to the time when the CLS signal is yellow. Consequently, the load shifting with the 
charging mode Simple is 31%. With the charging mode Smart, better results can be achieved. 
The EV, in this case, is charged only when the CLS signal is green or yellow and not at all when 
it is red. The amount of energy charged when the CLS signal is yellow has almost not changed.

However, 13.3 kWh of the energy charged when the CLS signal is red have been shifted to 
a period of time when the CLS signal is green. This corresponds to 73% of the whole charge.

The same calculation can also be done for the simulated charges with the three charging 
modes during the 9 months of the test phase. The load shifting during this whole period is 
shown in Fig. 5. There are slight differences comparing the charging mode Simple with the 
mode Normal. About 225 kWh of the energy charged when the CLS signal is red or yellow 
have been shifted to the period of time when the CLS signal is green. Thereby, the load shift-
ing with this charging mode is 9%. However, the EV is still mostly charged when the CLS 
signal is yellow. Differently, with the charging mode Smart, the EV is charged more than 
90% when the CLS signal is green, less than 8% when it is yellow and not even 1% when it 
is red. About 1833 kWh have been shifted to the period of time when the CLS signal is green. 
This corresponds to a load shifting of over 90%.

5.2  Greenhouse gas emissions

An important aim of this work is to reduce significantly the GHG emissions. The GHG emis-
sions of an EV depend on the electricity generation, which is used to charge it [17]. In this 

Figure 4: Load shifting of the three charging modes for the charge of Fig. 2.
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paper, two different electricity generations have been considered. One is the electricity gen-
eration in Germany [31] and the other one is an electricity generation of a local energy 
network operator [35]. With these two different electricity generations and the emission fac-
tors of the different energy sources [2, 31], the GHG emissions of the EV’s charges can be 
calculated.

Figure 6 shows the simulation of the charging process with the three charging modes and 
the trend of the GHG emissions in the German and in the local grid. It is noticeable that there 
is a correlation between the GHG emissions of the two grids.

For this charge with the charging mode Simple, the GHG emissions are not reduced. With 
the charging mode Smart instead, if the German electricity generation is considered, there is 
a reduction of more than 7%. If, for the Smart charge, the local energy generation is being 
used, there is a reduction of almost 22% of the GHG emissions.

Figure 7 shows the amount of the GHG emissions, considering the whole test phase with 
the different charging modes and electricity grid. With the charging mode Simple, the GHG 

Figure 5: Load shifting of the three charging modes during the 9 test months.

Figure 6: Simulation of the three charging modes and of the trend of the greenhouse gas 
emissions in the German and local electricity grid.
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are slightly reduced. With the charging mode Smart, they are reduced by over 5%, consider-
ing the German electricity generation and almost 15% considering the local electricity 
generation.

As can be observed in Fig. 6, the fluctuation of the GHG emissions of the German grid is 
not very high since in Germany, the percentage of RE in the grid is lower than 40% [35]. This 
means that 60% of the GHG emissions are produced from fossil fuels, which have a big influ-
ence because of their high emissions factors, which are up to 20 times higher than the one of 
the RE sources [2, 31].

The percentage of RE in the local grid is around 50% [35]. Consequently, the GHG emis-
sions of the local grid fluctuate more than those of the German grid since there is a higher 
percentage of fluctuating energy sources. For this reason, using the local grid electricity, the 
reduction of GHG emissions with the developed charging management systems is higher. 
This means that the higher the share of RE in the power grid is, the better results in terms of 
GHG emissions reduction can be achieved.

5.3  Charging costs

A similar evaluation can be performed for the costs of the EV’s charges. Figure 8 shows an 
example of the trend of the German electricity exchange price and the simulation of a charge 
with the three charging modes. Comparing Fig. 8 with Fig. 6, it is noticeable that there is a 
correlation between the GHG emissions and the electricity exchange price in Germany. Since 
the CLS signal is also correlated to the electricity exchange price, with the charging modes 
Simple and Smart, the cost of the charge is reduced.

As Fig. 9 shows, for the charge of the example in Fig. 8, with the charging modes Simple, 
there is a reduction of more than 20% of the electricity exchange price and with the mode 
Smart, the reduction rises to 38%.

Considering the whole test period with the charging mode Smart, there is a reduction of 
3% and with the mode Smart of over 12%. Actually, the electricity price in Germany is not 
directly correlated to the electricity exchange price but, in the future, there will be electricity 
tariffs based on variable electricity prices [36]. This will contribute to a reduction of the 
charging costs and to a stabilisation of the grid.

Figure 7: GHG emissions of the three charging modes with the German and local electricity 
grid for the 9 test months.
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6 CONCLUSIONS
In this paper, a model of EMS for sector coupling has been developed. A special signal, based 
on the share of RE in the grid, the electricity exchange price and the grid load, is sent from 
the local grid operator to the end user (EV or heating system). The end user then regulates 
through smart algorithms the energy demand. This paper focuses on flexible charging man-
agement which has been simulated and field tested for many months. The results show that 
the goal of charging the EV mostly when the CLS signal is green, and not when it is yellow 
or even worse red, has been achieved. The charging mode Simple has a low load shifting but 
with the charging mode Smart, 90% of the load can be rescheduled.

Furthermore, considering the whole test period, with this house DSM, there is a reduction 
of GHG emissions of 15% and of electricity costs of 12%.

The reduction of the GHG emission will be stronger, when the share of RE in the grid will 
be higher. In this case, the fluctuation of the GHG emissions will be broader and conse-
quently the charging management system will be more efficient. Besides, variable electricity 
tariffs which are based on electricity exchange prices will be available in the future. This will 
contribute to reducing the charging costs, balancing energy supply and demand and avoiding 
overloading the power grid.

Figure 8: Simulation of the three charging modes and of the trend of German electricity 
exchange price.

Figure 9: Cost of charges with the German electricity exchange price.
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