
Outdoor Localization for a Mobile Robot under Different Weather Conditions Using a Deep

Learning Algorithm

Hanan A. Atiyah* , Mohammed Y. Hassan

Control and Systems Engineering Department, University of Technology-Iraq, Baghdad 10066, Iraq

Corresponding Author Email: cse.19.03@grad.uotechnology.edu.iq

https://doi.org/10.18280/jesa.560101 ABSTRACT

Received: 7 November 2022

Accepted: 15 January 2023

A fundamental issue in robotics is the precise localization of mobile robots in uncertain

environments. Due to changing environmental patterns and lighting, localization under

difficult perceptual conditions remains problematic. This paper presents an approach for

locating an outdoor mobile robot using deep learning algorithms merge with 3D Light

Detection and Ranging LiDAR data and RGB-D image. This approach is divided into three

levels. The first is the training level, which involves scanning the localization area with a

3D LiDAR sensor and then converting the data into a 2.5D image based on the Principal

Component Analysis. The testing is the second level in the Intensity Hue Saturation

process. Then, the RGB and Depth images are combined to create a 2.5D fusion image.

These datasets are trained and tested using Convolution Neural Networks. The K-Nearest

Neighbor algorithm is used in the third level is the classification. The results show that the

proposed approach is better in terms of accuracy of 97.46% and the Mean error distance

is 0.6 meters.

Keywords:

CNN, deep learning, K-Nearest neighbors

algorithm, principal component analysis,

mobile robot localization

1. INTRODUCTION

Mobile robots are equipped to perform human service roles,

either because the tasks are challenging or hazardous [1] or

simply because of ease of use [2]. Mobile robots are used in

agriculture [3], military applications [4], and medical activities.

For example, the outbreak of the coronavirus illness (COVID-

19) in 2020 accelerated the process to industries the

autonomous robots [5]. One of the most important aspects of

mobile robots is navigation [6]. In some conditions,

localization provided success in navigation.

The problem of localization in the mobile robot is the

estimation in the operating area of the location and orientation

of the autonomous mobile robot. The location of the robot

depends upon the sensor used. Odometry, RGB, Light

Detection and Ranging (LiDAR), Global Position System

(GPS), laser radar, ultrasonic, infrared, and microwave are the

sensors widely used for mobile robots [7].

Due to varying environmental conditions, some methods

declined to classify a mobile robot's position accurately.

Furthermore, specific sensors, for example RGB, did not

perform admirably in an outdoor setting where light is

empathetic. Other approaches are affected in rainy or textured

environments. As a result, a system dependent on 3-D data and

a DL technique was proposed to obtain precision and

durability in identifying the precise position of the mobile

robot in various weather conditions. In addition, a robust CNN

architecture with thousands of datasets has been proposed with

differences in the data collection environment.

There are three levels in the suggested process. Each level

contains a variety of activities, including training level, testing

level, and classification level. The PCA technique is used to

convert a 3D LiDAR point cloud scan into a 2.5-D image

during the training level. The Convolution Neural Network

(CNN) algorithm is used to extract features from the 2.5-D

images., Then, to include them in the classification level, all

features and point cloud data are saved as a matrix. This is for

determining the proper ground location of a mobile robot.

Image fusion is performed at the testing level by merging two

pictures, RGB and Depth, into a single RGB-D fusion image

and then features extraction from the RGB-D fusion image

using CNN. In the classification level, the tested image is

classified using the K-Nearest Neighbors algorithm to identify

the location of a mobile robot.

The novelty of this paper is to improve outdoor localization

in mobile robots using 3-D data from LiDAR and RGB-D,

using the proposed system of PCA method, KNN algorthim,

and deep learning algorithm.

This paper is structured as follows: The related work in

Section 2. In section 3, the material and methodology are

presented. the proposed method is outlined in details in section

4. The experimental results and discussion are presented in

Section 5. Finally, section 6 gives the conclusion.

2. RELATED WORK

Autonomous navigation is one of the most difficult tasks a

mobile robot can perform. To navigate successfully, a mobile

robot must be skilled in four critical elements of autonomous

navigation: perception, localization, recognition, and motion

control. As a result, significant progress has been made. This

section will provide a summary of the most commonly used

outdoor localization techniques for mobile robots. It will also

discuss the various sensor vision techniques used to improve

the overall precision and efficiency of the localization method,

as well as the benefits and challenges associated with each.

In the outdoor environment, GPS is one of the usual

Journal Européen des Systèmes Automatisés
Vol. 56, No. 1, February, 2023, pp. 1-9

Journal homepage: http://iieta.org/journals/jesa

1

https://orcid.org/0000-0002-4540-2332
https://orcid.org/0000-0003-3717-906X
https://crossmark.crossref.org/dialog/?doi=10.18280/jesa.560101&domain=pdf

localization solutions. However, these solutions are inaccurate

or available in environments such as (tunnels, caves, tall

buildings, and under trees) [8]. It can lead to errors in a few

meters, which is unacceptable to robot driving. Furthermore, a

travelling robot must move in a complicated world of possible

challenges, even though it does not always have previous

knowledge of its surroundings [9].

As a result of these issues, vision is already the most often

used sensor for the outdoor position [10, 11]. However,

optimizing robotics performance through the application of

Machine Learning (ML) technologies has created new

difficulties in ML. There has been an increase in interest and

dedication in developing ML methods for robotics systems

that rely on computer vision in recent years [12].

Because illumination is strongly dependent on the terrain,

such as (sunshine, rain, clouds), outdoor lighting changes are

a major concern for visibility. RGB cameras alone may not be

sufficient. Current sensors, such as portable LiDAR or RGB-

D cameras, add depth information to RGB imagery, opening

up new possibilities for developing robust and practical

applications [13-15].

The research community focuses on Deep Learning (DL) in

Localization of mobile robots. Two approaches for outdoor

localization were presented by Nilwong et al., with an

increasing focus on deep learning and landmark recognition.

The first access uses a Faster Regional-Convolutional Neural

Network to identify landmarks in the recorded image (Faster

R-CNN). Then, using the landmarks as input, a Feedforward

Neural Network (FFNN) is used to estimate robot position

coordinates and compass direction. Unfortunately, the failure

rate of orienting was extremely high, and the outcomes were

poor. The following factors contribute to high orientation

errors: - The proposed localization methods only needed a

small amount of data; - During data collection, there were very

few environmental variations [8]. Debeunne & Vivet

presented a comprehensive study into visual-LiDAR

Simultaneous Localization and Mapping SLAM. LiDAR-

based SLAM provides exact 3D details about the environment.

Still, it is time-intensive and relies on insecure scan-matching

techniques, and in rainy or textured environments, LiDAR-

SLAM performs poorly [9].

For example, several researchers have experimented with

determining the robot's position in various weather

environments. Rawashdeh et al. used infrared, visual

odometry, and depth cameras. This approach was weak, and it

could not be used independently [16]. Outdoor navigation

localization using simply a stereo camera was proposed by

Tomono et al., but the findings revealed some mistakes in the

meters. Moreover, it failed under the worst circumstances.

Owing to the camera's small dynamic range, direct

illumination, for example, will blacken or whiten a significant

chunk of the acquired image. This scenario cannot see good

edge points, resulting in considerable motion measurement

errors [17].

3. METHODOLOGY

To train the deep learning network and obtain the 3D dataset,

two sensors are used mounted with the mobile robot; LiDAR

and RGB with Depth (RGB-D) sensor.

3.1 Point cloud LiDAR sensor

The data obtained by a LiDAR is used to create 3D models

and maps of structures and environments. LiDAR determines

the structure by measuring the time it takes for signals to

bounce off surfaces and return to the scanner [18]. After

analysing and organising the individual readings, the LiDAR

data becomes point cloud data. The point clouds are vast arrays

of 3D elevation points with x, y, and z coordinates [14]. A

standard 3D LiDAR is from the other hand, may acquire

surroundings data with a vertical Field of View (FOV) of 30

(±15) º and a horizontal FOV of 360º at a scanning rate of

about 10 Hz [14]. High resolution allows the LiDAR to gather

a large amount of valuable data in a region of long ranges.

LiDAR is commonly used in robot systems because of these

advantages [14].

3.2 Reduction 3D LiDAR point cloud to 2.5D image

One of the most well-known and widely utilized methods is

Principal Component Analysis (PCA). Its premise is

straightforward: limit the dimensionality of a dataset while

retaining as much 'variability' (i.e., statistical information) as

possible [19]. Solving the covariance matrix obtains the major

components. The PCs of the PCA space are calculated in this

method in two steps. The data matrix's covariance matrix (X)

is constructed first. Second, the covariance matrix's

eigenvalues and eigenvectors are determined. The covariance

matrix is asymmetric and always positive semi-definite matrix

(i.e., X = XT). The variable variance is represented by the

diagonal values xi, I = 1,..., M of the covariance matrix,

whereas the off-diagonal entries as illustrated in Equation (1),

represent the covariance between two separate variables. A

positive covariance matrix value shows A positive correlation

between two variables is indicated by a positive value, a

negative correlation is indicated by a negative value, and a

zero value indicates that the two factors are uncorrelated or

statistically independent [20].

(

Var⁡(x1, x1) Cov⁡(x1, x2) … Cov⁡(x1, xM)

Cov⁡(x2, x1) Var⁡(x2, x2) … Cov⁡(x2, xM)
⋮ ⋮ ⋱ ⋮

Cov⁡(xM, x1) Cov⁡(xM, x2) Var⁡(xM, xM)

) (1)

The eigenvalues (𝜆) and eigenvectors (V) of the covariance

matrix are calculated based [20]:

VΣ = λV (2)

The first principal component has the most giant variance

and is represented by the eigenvector with the highest

eigenvalue. Each eigenvector corresponds to a single primary

component. The eigenvectors depict the directions in the PCA

space [21].

3.3 Ground removal by rotation around Z-axis

In 3D, there are a variety of techniques to express rotations.

Euler angles, quaternions, and rotation matrices are common

representations. Even though they require various parameters,

these representations can describe rotations with three degrees

of freedom [22, 23]:

Rz = [
cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0
0 0 1

] (3)

2

Rx = [

1 0 0
0 cos(θ) − sin(θ)

0 sin(θ) cos(θ)
] (4)

Ry = [
cos⁡(θ) 0 sin⁡(θ)

0 1 0
−sin⁡(θ) 0 cos⁡(θ)

] (5)

3.4 RGB-D camera

Because of popular RGB-D sensors such as Microsoft's

Kinect, showing 3D data as RGB-D images has really become

popular in recent years. RGB-D data provides a 2.5D

representation of the captured 3D object by including a depth

map (D) as well as 2D color information (RGB). Although

cheap, RGB-D data are simple yet effective representations of

3D objects that can be used for various tasks such as identity

recognition, pose regression, and scene reconstruction [24, 25].

3.5 Fusion image by (IHS) Transformations

Image fusion is a technique used to extract useful data from

many input photographs and merge it to create a new output

image that is more descriptive and useful than the sum of the

input images [26]. Image fusion reduces data size, keeps vital

features, and provides a more accessible image [27].

The IHS methodology has become a standard process in

image processing for color enhancement, feature enhancement,

pixel size optimization, and the merging of various data sets.

The goal of combining high-resolution and hyperspectral

remotely sensed photos is to ensure spectral data while also

including high - spatial detail information, making the fusion

significantly more suitable for IHS treatment [28]. Because the

RGB to IHS conversion model employs a 3x3 matrix as its

transform kernel, most literature considers IHS to be a third-

order process. Most literature considers IHS to be a third-order

process. Many published studies indicated that different IHS

transformations are used, which have significant variations in

the matrix values, as described below. R = Red, G = Green,

and B = Blue were used in this analysis. I = Intensity, H = Hue,

S = Saturation, and V1, V2 = Cartesian hue and saturation

elements [28].

[
I
V1

V2

] =

[

1

√3

1

√3

1

√3
−1

√6

−1

√6

2

√6
−1

√2

1

√2
0]

[
R
G
B
] H = tan−1⁡ (

V2

V1
) S =

√V1
2 + V2

2

(6)

The RGB and depth pictures are merged in the precise

location to form the 2.5D image in IHS methods. The color-

carrying data is detached from the intensity variable in a color

picture (Hue and Saturation). The IHS color is created by

utilizing geometrical formulas to convert RGB points into

matching points [29].

3.6 Deep learning algorithms

Machine learning has taken a powerful turn in recent years,

thanks to the rise of Artificial Neural Networks [30]. One of

most impressive forms of ANN architecture is CNN [31]. The

CNN is a hybrid of artificial neural networks and cutting-edge

deep learning techniques. CNN's are at the heart of spectacular

developments in deep learning. For decades, this artificial

neural network has been used to perform various image

detection tasks. CNN has recently piqued the interest of

researchers from around the world, as it has demonstrated

impressive results in a variety of computer vision and machine

learning tasks [32]. As depicted in Figure 1, CNNs are built up

of three layers: Convolution, pooling, and fully connected

layers. Convolution and pooling are the first two layers that

extract features, whereas the third, a fully connected layer,

maps specific features into the outcome, such as classification.

A convolution layer, a type of linear operation, is a crucial

aspect of CNN. It is made up of a set of mathematical

operations such as convolution. Image pixels are stored in a

two-dimensional matrix [33].

Figure 1. The architecture of CNN [32]

3.7 K-Nearest Neighbour (K-NN) algorithm

For data classification tasks, distance-based algorithms are

commonly used. One of the most widely used distance-based

algorithms is the K-Nearest Neighbor classification (K-NN).

This classification calculates the distances between the testing

machine and the training data to decide the final classification

performance. With numerical results, the standard K-NN

classifier works well [34]. A popular distance-based

classification method is the K-Nearest Neighbour's (K-NN)

classification technique. The standard K-NN classification

algorithm recognises the K-Nearest Neighbor(s) and

categorizes numerical data records by measuring the distance

between both the test sample and all training samples using the

Euclidian distance [35].

1. Calculate the number of closest neighbours (K values);

see Figure 2.

2. As indicated in Figure 3, find the distance between both

the testing data and one of the training examples.

The proximity between A and B in Euclidean

distance = √(X2 − X1)
2 + (Y2 − Y1)

2
(7)

Figure 2. K-Nearest neighbor principle [34]

3. Sort the distance using the K-th minimal distance to find

3

the nearest neighbours.

4. Make a list of the categories of your nearest neighbours.

5. Use the simple majority of the group of closest neighbors

as the additional data object's prediction value. neighbours.

Figure 3. The Euclidian distance to measure the distance

between two data [35]

3.8 Measuring the error

To calculate the error of an approximate arithmetic circuit.

The Error Rate (ER), Mean Square Error (MSE), and Mean

Error Distance (MED) are used to calculate the error rate. For

example, the discrepancy between the estimated and real sums

S* and S is known as the error of distance (ED) [36]:

ED = |S∗ − S| (8)

The error rate is the number of input configurations for

which the predicted adder produces wrong outputs (ER). As a

result, a non-zero error gap can be calculated as:

ER = P(ED ≠ 0) (9)

The (MED) is the average of all error distances. The Mean

Squares of Error (MSE) overall error distances is calculated as

[36]:

MED = E[ED] = ∑  EDi∈Ω EDiP(EDi) (10)

MSE = E[ED2] = ∑  EDi∈Ω EDi
2P(EDi) (11)

where, Ω is the total number of error distances.

MSE is calculated as follows: if n predictions are made from

a sample of n data, Y is the variable being forecasted, and Y ̂

is the predicted value [37]:

MSE =
1

n
∑  n

i=1 (Yi − Ŷi)
2
 (12)

4. PROPOSED OUTDOOR LOCALIZATION SYSTEM

To improve the efficiency and reliability of a localization

system, the proposed method uses 3-D data to determine the

position of a mobile robot under various weather conditions.

The proposed approach is depicted in Figure 4, which is

formed by two sensors LiDAR and RGB-D position on a

mobile robot for data collection for training and testing. This

paper's proposed method is divided into three levels. There are

several operations at the training level, testing level, and

classification level. During training, the LiDAR sensor

performs a scan to collect 3-D dataset. The PCA method

converts a 3-D point cloud to a 2.5-D image. Then the feature

is extracted from 2.5-D images using the CNN algorithm. A

matrix is used to store all featured data, pre-processing and

point cloud data. The RGB and Depth sensors are used in the

testing level to obtain two images of the exact location. Using

the IHS method, merge RGB images with Depth into an RGB-

D image to create a 2.5-D fusion image. The CNN algorithm

extracts the features from a 2.5-D RGB-D image. Following

that, all of the feature data is arranged in a matrix. To

determine the correct position of the mobile robot, The test

data is categorized alongside the training data in the

classification level of the K-NN classifier.

Figure 4. Proposed outdoor localization system

5. EXPERIMENTAL RESULTS

5.1 Collected datasets

Using supervised learning, typically, a large amount of data

is required to train a neural network. To train and test the

proposed system, a dataset that included Image data in

different weather conditions, depth images, and LiDAR data

with corresponding mode labels was used. Seeing as this was

not realized in the public domain, it was decided to employ a

simulator to generate the data required. Simulated results are

created using the CARLA driving simulator. CARLA is a

testing simulator for autonomous vehicles (open-source

simulator) [38]. CARLA was explicitly built to support the

production, training, and testing of self-driving automated

systems. CARLA also offers available digital assets (urban

layouts, homes, and automobiles) built specifically for this

purpose and can be widely accessed [38, 39]. A camera sensor

can be attached to a mobile robot in CARLA to capture images

at a fixed frame rate. As seen in Figure 5, the camera sensor

can produce images in both RGB and Depth.

4

(a) RGB image

(b) Depth image

Figure 5. The RGB image corresponds to the Depth map

(photos from Carla open-source simulator)

The simulator is capable of simulating a variety of weather

conditions. Rain with puddles light reflected, cloud cover that

darkens the ambience, and simulated sunny weather that

produces fake lens flares whereas the sun is in the frame are

all examples. In addition, data on a variety of environmental

conditions is collected [38], seen in Figure 6.

(a) Rainy weather (b) Sunny weather

(c) Cloudy weather (d) Clear weather

Figure 6. Image visualization in a variety of weather

conditions (photos from Carla open-source simulator)

LiDAR sensors can be reproduced in CARLA. The upper

and lower farms of view, as well as the number of channels,

total size, and the number of points in each direction can be

customized. During scan capture, the simulation region can be

frozen, resulting in a 360-degree scan without the need for

velocity adjustments. Figures 7 and 8 are two examples of this.

To create the data sets used in this study, a mobile robot

equipped with LiDAR sensor and RGB-D camera was set to

travel around a map on autopilot. The data set encompasses

roughly 120,000 m2 of a map, including the suburban

neighbourhoods, downtown area, and wooded areas. Two

training data sets were obtained, one with 15000 images, 5000

images for each weather condition and Depth picture pairs,

and 46,741 LiDAR frames. As seen in Figure 9, this city

district is divided into nine streets with a street between them.

Each street has two sections: the begin and the end, as seen

in Table 1.

Figure 7. LiDAR scan as a point cloud (photos from Carla

open source simulator)

Figure 8. LiDAR analysis after MeshLab display [38]

Figure 9. Carla simulator's suggested street numbers

5.2 CNN localization

The CNN for localization has a total of 12 layers. With a

brief training period, a 12-layer CNN with a 224 x 224 input

image was designed. The optimizer Stochastic Gradient

Descent with Momentum (SGDM) was used in this network.

Table 2 shows the analysis result of the network design. With

the K-NN classifier, there are 16 classes based on the number

of streets identified in Figure 9.

Figure 10 illustrates the configuration of the implemented

CNN.

Figure 10. CNN localization with 12-layers

5

Table 1. Division of streets and data for each street

Item
The name of the

street

No. of LiDAR frame

estimates for per street

Each street has a certain number of test images (each weather conditions)

Cloudy Rainy Sunny

1 The begin of street 1 750 20 15 15

2 The end of street 1 1600 20 36 35

3 The begin of street 2 900 20 20 15

4 The end of street 2 3300 70 60 80

5 street 3 750 10 15 15

6 The begin of street 4 1750 36 30 36

7 The end of street 4 1900 30 20 28

8 The begin of street 5 2650 55 45 60

9 The end of street 5 1300 20 30 35

10 Street 6 950 30 15 15

11 The begin of street 7 3250 40 95 50

12 The end of street 7 1550 28 65 30

13 Street 8 1600 40 30 40

14 The begin of street 9 1200 15 30 15

15 The end of street 9 1300 10 45 15

16 Between street 1000 30 25 30

Table 2. Analysis result for the CNN architecture

 Name Type Activations Learnables

1
Imageinput

224×224×3 image with ‘zerocenter’ normalization
Image input 224×224×3 -

2
CONV_1

2 3×3×2 convolutions with stride [1 1] and padding [1 1 1 1]
Convolution 224×224×2

Weights 3×3×3×2

Bias 1×1×2

3
Batchnorm_1

Batch normalization with two channels
Batch Normalization 224×224×2

offset 1×1×2

scale 1×1×2

4
Relu_1

ReLU
ReLU 224×224×2 -

5
Maxpool_1

2×2 max pooling with stride [2 2] and padding [0 0 0 0]
Max Pooling 112×112×2 -

6
CONV_2

32 3×3×2 convolutions with stride [1 1] and padding [1 1 1 1]
Convolution 112×112×32

Weights 3×3×2×32

Bias 1×1×32

7
Batchnorm_2

Batch normalization with 32 channels
Batch Normalization 112×112×32

offset 1×1×32

scale 1×1×32

8
Relu_2

ReLU
ReLU 112×112×32 -

9
Maxpool_2

2×2 max pooling with stride [2 2] and padding [0 0 0 0]
Max Pooling 56×56×32 -

10
FC

16 fully connected layer
Fully Connected 1×1×16

Weights 16×100352

Bias 16×1

11
Softmax

softmac
Softmax 1×1×16 -

12
Classoutput

Crossentropex with ‘between’ and 15 other classes
Classification output - -

Figure 11. The result of training time expended and training accuracy

6

5.3 Network training and analysis

The MatLab code was created on a PC equipped with a Core

(TM) Intel (R) i5-8250U processor. 1.80 GHz RAM 8 GB,

UHD Graphics 620. It took four epochs to process the dataset

containing 46,741 LiDAR frames. Each epoch has 70

iterations, with a maximum of 280 iteration numbers possible

and a learning period rate of 3*10-4. The preparation took 415

minutes, containing 70% of the dataset for training and 30%

of the test dataset. As seen in Figure 11, the accuracy obtained

is 97.46%.

5.4 Result of IHS transformation

When merging RGB and Depth images, the IHS method has

an impact. The Intensity of a pixel in a depth picture varies

based on its brightness. Figure 12 shows how the Hue,

Saturation, and Intensity combine in the 2.5-d images in

various weather conditions. The change in the 2.5D images is

noticed for these three different weather conditions, which led

to the strength of the approach in identifying the mobile robot's

correct position in these weather changes.

IHS in sunny weather

IHS in rainy weather

IHS in cloudy weather

Figure 12. Creating a 2.5D image by merging two RGB with

different conditions and depth images

5.5 Evaluation results

To check the performance of the proposed approach of PCA

method with IHS and using the K-NN algorithm, it is

necessary to obtain a high-quality and precise localization

sample that can be compared to reality on the ground. Tested

nine states with random locations in the city under different

weather conditions are listed in Table 3:

Table 3. Summary of test results in various weather

conditions (Cloudy, Rainy and Sunny weather)

State
The correct localization

prediction
MSE

1 Between streets 0.0432

2 Beginning of street 1 0.0472

3 Beginning of street 2 0.0421

4 Street 6 0.0360

5 End of street 9 0.036

6 Street 3 0.0216

7 End of street 1 0.0545

8 End of street 5 0.0678

9 Street 6 0.036

Mean error 0.0427

Table 4. A comparison of the proposed method to other

methods

Method
Average

error

Maximum

error

Training

time

Data

set

Fingerprinting

positioning

method +

IEEE802.11a

platform, i.e., 5

GHz in ISM

band [40]

20.12 m 20.12 m -- --

Particle filter

based on

Monte Carlo

Localization

[17]

0.6 m 2.7 m -
16530

images

ICP+

PointNetLK+

GoogleNet [23]

18.3 m 131.6 m
4200

minutes

10400

images

Proposed

method

CNN +PCA

+K-NN

0.6 m 1.09 m
415

minutes

46741

frame

LiDAR

CARLA achieved a frame rate of 30 frames per second (FPS)

in one meter to calculate the Mean Error Distance. From

equations (10 and 11), MED = 0.6 meters.

The proposed approach is superior to the research method

is depicted in Table 4.

Table 4 reference 40 used the technique positioning system

WifiLOC, which is currently being developed as a research

tool at the University of Zilina. WifiLOC estimates a mobile

device's location using RSS information from nearby Wi-Fi

APs. The method is built on the fingerprinting positioning

algorithm and earlier RSS data. The proposed approach does

not rely on a picture of deep learning technologies, so the error

rate is respectively high. In reference 17, Only use a stereo

camera for vision-based localization in outdoor environments.

A particle swarm optimization based on Monte Carlo

Localization is used in the localization process, which fails in

extreme cases. For example, due to the camera's restricted

dynamic range, direct sunlight will saturate a significant

portion of the captured image to black or white. Researchers

discovered that this problem is equivalent to wheel slip in

wheel odometry and categorized it as an abducted robot

problem to overcome this limitation. It also notes that the

average error is almost equal to the proposed method, but the

maximum error is 2.7 m, and the proposed method does not

exceed 1.09 m. While in reference 23, the (ICP) algorithm was

used, the PointNetLK network was utilized in registration, and

GoogleNet was used for the RGB-D Neural network. Also,

notice that average error and training time are very high

compared to the proposed method. The proposed system used

a deep learning technique that took 415 minutes to train.

Although the dataset was 46,741 LiDAR frames to obtain the

accuracy of 97.46%, MSE equals 0.0427, and the Mean Error

of Distance equals 0.6 meters using the PCA method for the

fusion picture IHS is used the K-NN classifier. The findings of

the proposed work reduce the training time, are more accurate,

and reduce the error rate.

6. CONCLUSION

The mobile robot localization system described in this paper

7

is designed to address the problem of robot location loss in the

outdoor surroundings in different weather conditions caused

by various factors that influence the sensors mounted on the

robot. As a consequence, the location is determined wrongly.

Thus, with the help of Deep Learning algorithms, 3-D sensors

to achieve greater precision is proposed. Training, testing, and

classification are the three levels of the planned architecture.

This method employs PCA to reduce dimensions and rotate

the point cloud with 3-D LiDAR, the IHS method produces the

2.5-D RGB-D fusion signal. In addition, the K-NN algorithm

to obtain high-accuracy results with minimal training time.

The results obtained are compared with other algorithms'

findings that improved with 97.46% accuracy, MSE of 0.0427,

MED equals 0.6 meters. Furthermore, the training time is

reduced to 415 minutes, which keeps costs down by lowering

computing resources without losing accuracy.

REFERENCES

[1] Peel, H., Luo, S., Cohn, A.G., Fuentes, R. (2018).

Localisation of a mobile robot for bridge bearing

inspection. Automation in Construction, 94: 244-256.

https://doi.org/10.1016/j.autcon.2018.07.003

[2] Palacín, J., Martínez, D., Rubies, E., Clotet, E. (2020).

Mobile robot self-localization with 2D push-broom

LIDAR in a 2D map. Sensors, 20(9): 2500.

https://doi.org/10.3390/s20092500

[3] Gené-Mola, J., Gregorio, E., Guevara, J., Auat, F., Sanz-

Cortiella, R., Escolà, A., Llorens, J., Morros, J., Ruiz-

Hidalgo, J., Vilaplana, V., Rosell-Polo, J.R. (2019). Fruit

detection in an apple orchard using a mobile terrestrial

laser scanner. Biosystems Engineering, 187: 171-184.

https://doi.org/10.1016/j.biosystemseng.2019.08.017

[4] Ha, Q.P., Yen, L., Balaguer, C. (2019). Robotic

autonomous systems for earthmoving in military

applications. Automation in Construction, 107: 102934.

https://doi.org/10.1016/j.autcon.2019.102934

[5] Zghair, N.A.K., Al-Araji, A.S. (2021). A one decade

survey of autonomous mobile robot systems.

International Journal of Electrical and Computer

Engineering, 11(6): 4891.

http://doi.org/10.11591/ijece.v11i6.pp4891-4906

[6] Kamil, R.T., Mohamed, M.J., Oleiwi, B.K. (2020). Path

planning of mobile robot using improved artificial bee

colony algorithm. Engineering and Technology Journal,

38(9A): 1384-1395.

http://doi.org/10.30684/etj.v38i9a.1100

[7] Wang, X., Wang, X., Wilkes, D.M. (2019). Machine

Learning-Based Natural Scene Recognition for Mobile

Robot Localization in an Unknown Environment.

Springer.

[8] Nilwong, S., Hossain, D., Kaneko, S.I., Capi, G. (2019).

Deep learning-based landmark detection for mobile robot

outdoor localization. Machines, 7(2): 25.

http://doi.org/10.3390/machines7020025

[9] Debeunne, C., Vivet, D. (2020). A review of visual-

LiDAR fusion based simultaneous localization and

mapping. Sensors, 20(7): 2068.

http://doi.org/10.3390/s20072068

[10] Qu, X., Soheilian, B., Paparoditis, N. (2018). Landmark

based localization in urban environment. ISPRS Journal

of Photogrammetry and Remote Sensing, 140: 90-103.

http://doi.org/10.1016/j.isprsjprs.2017.09.010

[11] Shi, Y., Zhang, W., Li, F., Huang, Q. (2020). Robust

localization system fusing vision and lidar under severe

occlusion. IEEE Access, 8: 62495-62504.

http://doi.org/10.1109/ACCESS.2020.2981520

[12] Akai, N. (2022). Mobile robot localization considering

uncertainty of depth regression from camera images.

IEEE Robotics and Automation Letters, 7(2): 1431-1438.

http://doi.org/10.1109/LRA.2021.3140062

[13] Zheng, Y., Chen, S., Cheng, H. (2020). Real-time cloud

visual simultaneous localization and mapping for indoor

service robots. IEEE Access, 8: 16816-16829.

http://doi.org/10.1109/ACCESS.2020.2966757

[14] Li, X., Du, S., Li, G., Li, H. (2019). Integrate point-cloud

segmentation with 3D LiDAR scan-matching for mobile

robot localization and mapping. Sensors, 20(1): 237.

http://doi.org/10.3390/s20010237

[15] Li, J., Wang, C., Kang, X., Zhao, Q. (2019). Camera

localization for augmented reality and indoor positioning:

A vision-based 3D feature database approach.

International Journal of Digital Earth, 13(6): 727-741.

http://doi.org/10.1080/17538947.2018.1564379

[16] Abdo, A., Ibrahim, R., Rawashdeh, N.A. (2020). Mobile

robot localization evaluations with visual odometry in

varying environments using Festo-Robotino. SAE

Technical Paper 2020-01-1022.

http://doi.org/10.4271/2020-01-1022

[17] Irie, K., Yoshida, T., Tomono, M. (2012). Outdoor

localization using stereo vision under various

illumination conditions. Advanced Robotics, 26(3-4):

327-348. http://doi.org/10.1163/156855311X614608

[18] Hwang, I.P., Lee, C.H. (2020). Mutual interferences of a

true-random LiDAR with other LiDAR signals. IEEE

Access, 8: 124123-124133.

http://doi.org/10.1109/ACCESS.2020.3004891

[19] Jolliffe, I.T., Cadima, J. (2016). Principal component

analysis: A review and recent developments.

Philosophical transactions of the royal society A:

Mathematical, Physical and Engineering Sciences,

374(2065): 20150202.

http://doi.org/10.1098/rsta.2015.0202

[20] Tharwat, A. (2016). Principal component analysis-a

tutorial. International Journal of Applied Pattern

Recognition, 3(3): 197-240.

https://doi.org/10.1504/IJAPR.2016.079733

[21] Duan, Y., Yang, C., Chen, H., Yan, W., Li, H. (2021).

Low-complexity point cloud denoising for LiDAR by

PCA-based dimension reduction. Optics

Communications, 482: 126567.

http://doi.org/10.1016/j.optcom.2020.126567

[22] Kazhdan, M. (2007). An approximate and efficient

method for optimal rotation alignment of 3D models.

IEEE Transactions on Pattern Analysis and Machine

Intelligence, 29(7): 1221-1229.

http://doi.org/10.1109/TPAMI.2007.1032

[23] Bastås, S.I.M.O.N., Brenick, R.O.B.E.R.T. (2019).

Outdoor global pose estimation from RGB and 3D data.

(Doctoral dissertation, M. Sc. thesis, in Systems, Control

and Mechatronics, Dept. of Mechanics and Maritime

Sciences, Chalmers University of Technology,

Gothenburg, Sweden.

http://publications.lib.chalmers.se/records/fulltext/2569

08/256908.pdf.

[24] Qiu, Z., Zhuang, Y., Yan, F., Hu, H., Wang, W. (2018).

RGB-DI images and full convolution neural network-

8

based outdoor scene understanding for mobile robots.

IEEE Transactions on Instrumentation and Measurement,

68(1): 27-37. http://doi.org/10.1109/TIM.2018.2834085

[25] Ahmed, E., Saint, A., Shabayek, A.E.R., et al. (2018). A

survey on deep learning advances on different 3D data

representations. arXiv preprint arXiv:1808.01462.

[26] Mishra, D., Palkar, B. (2015). Image fusion techniques:

a review. International Journal of Computer Applications,

130(9): 7-13.

[27] Masood, S., Sharif, M., Yasmin, M., Shahid, M.A.,

Rehman, A. (2017). Image fusion methods: A survey.

Journal of Engineering Science & Technology Review,

10(6): 186-194. http://doi.org/10.25103/jestr.106.24

[28] Al-Wassai, F.A., Kalyankar, N.V., Al-Zuky, A.A. (2011).

The IHS transformations based image fusion. arXiv

preprint arXiv:1107.4396.

http://arxiv.org/abs/1107.4396

[29] Chien, C.L., Tsai, W.H. (2013). Image fusion with no

gamut problem by improved nonlinear IHS transforms

for remote sensing. IEEE Transactions on Geoscience

and Remote Sensing, 52(1): 651-663.

http://doi.org/10.1109/TGRS.2013.2243157

[30] Patil, A., Rane, M. (2021). Convolutional neural

networks: An overview and its applications in pattern

recognition. In: Senjyu, T., Mahalle, P.N., Perumal, T.,

Joshi, A. (eds) Information and Communication

Technology for Intelligent Systems. ICTIS 2020. Smart

Innovation, Systems and Technologies, vol 195. Springer,

Singapore. https://doi.org/10.1007/978-981-15-7078-

0_3

[31] Abdulhussein, A.A., Raheem, F.A. (2020). Hand gesture

recognition of static letters American sign language

(ASL) using deep learning. Engineering and Technology

Journal, 38(6): 926-937.

http://doi.org/10.30684/etj.v38i6a.533

[32] Alzubaidi, L., Zhang, J., Humaidi, A.J., Al-Dujaili, A.,

Duan, Y., Al-Shamma, O., Santamaría, J., Fadhel, M.A.,

Al-Amidie, M., Farhan, L. (2021). Review of deep

learning: Concepts, CNN architectures, challenges,

applications, future directions. Journal of Big Data, 8: 1-

74. http://doi.org/10.1186/s40537-021-00444-8

[33] Atiyah, H.A., Hassan, M.Y. (2021). Outdoor localization

in mobile robot with 3D LiDAR based on principal

component analysis and K-Nearest neighbors algorithm.

Engineering and Technology Journal, 39(6): 965-976.

http://doi.org/10.30684/etj.v39i6.2032

[34] Ali, N., Neagu, D., Trundle, P. (2019). Evaluation of K-

Nearest neighbour classifier performance for

heterogeneous data sets. SN Applied Sciences, 1: 1-15.

https://doi.org/10.1007/s42452-019-1356-9

[35] Hu, L.Y., Huang, M.W., Ke, S.W., Tsai, C.F. (2016). The

distance function effect on K-Nearest neighbor

classification for medical datasets. SpringerPlus, 5(1): 1-

9. http://doi.org/10.1186/s40064-016-2941-7

[36] Wu, Y., Li, Y., Ge, X., Gao, Y., Qian, W. (2018). An

efficient method for calculating the error statistics of

block-based approximate adders. IEEE Transactions on

Computers, 68(1): 21-38.

http://doi.org/10.1109/TC.2018.2859960

[37] Mahmoud, T.S., Habibi, D., Hassan, M.Y., Bass, O.

(2015). Modelling self-optimised short term load

forecasting for medium voltage loads using tunning

fuzzy systems and Artificial Neural Networks. Energy

Conversion and Management, 106: 1396-1408.

http://doi.org/10.1016/j.enconman.2015.10.066

[38] Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A.,

Koltun, V. (2017). CARLA: An open urban driving

simulator. In Conference on Robot Learning, PMLR, pp.

1-16. https://doi.org/10.48550/arXiv.1711.03938

[39] Kaneko, M., Iwami, K., Ogawa, T., Yamasaki, T.,

Aizawa, K. (2018). Mask-SLAM: Robust feature-based

monocular slam by masking using semantic

segmentation. In Proceedings of the IEEE conference on

computer vision and pattern recognition workshops, Salt

Lake City, UT, USA, pp. 258-266.

http://doi.org/10.1109/CVPRW.2018.00063

[40] Brida, P., Machaj, J. (2015). Impact of weather

conditions on fingerprinting localization based on IEEE

802.11 a. In Computational Collective Intelligence: 7th

International Conference, ICCCI 2015, Madrid, Spain,

pp. 316-325. Springer International Publishing.

https://doi.org/10.1007/978-3-319-24306-1_31

9

