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A fundamental issue in robotics is the precise localization of mobile robots in uncertain 

environments. Due to changing environmental patterns and lighting, localization under 

difficult perceptual conditions remains problematic. This paper presents an approach for 

locating an outdoor mobile robot using deep learning algorithms merge with 3D Light 

Detection and Ranging LiDAR data and RGB-D image. This approach is divided into three 

levels. The first is the training level, which involves scanning the localization area with a 

3D LiDAR sensor and then converting the data into a 2.5D image based on the Principal 

Component Analysis. The testing is the second level in the Intensity Hue Saturation 

process. Then, the RGB and Depth images are combined to create a 2.5D fusion image. 

These datasets are trained and tested using Convolution Neural Networks. The K-Nearest 

Neighbor algorithm is used in the third level is the classification. The results show that the 

proposed approach is better in terms of accuracy of 97.46% and the Mean error distance 

is 0.6 meters. 
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1. INTRODUCTION

Mobile robots are equipped to perform human service roles, 

either because the tasks are challenging or hazardous [1] or 

simply because of ease of use [2]. Mobile robots are used in 

agriculture [3], military applications [4], and medical activities. 

For example, the outbreak of the coronavirus illness (COVID-

19) in 2020 accelerated the process to industries the

autonomous robots [5]. One of the most important aspects of

mobile robots is navigation [6]. In some conditions,

localization provided success in navigation.

The problem of localization in the mobile robot is the 

estimation in the operating area of the location and orientation 

of the autonomous mobile robot. The location of the robot 

depends upon the sensor used. Odometry, RGB, Light 

Detection and Ranging (LiDAR), Global Position System 

(GPS), laser radar, ultrasonic, infrared, and microwave are the 

sensors widely used for mobile robots [7]. 

Due to varying environmental conditions, some methods 

declined to classify a mobile robot's position accurately. 

Furthermore, specific sensors, for example RGB, did not 

perform admirably in an outdoor setting where light is 

empathetic. Other approaches are affected in rainy or textured 

environments. As a result, a system dependent on 3-D data and 

a DL technique was proposed to obtain precision and 

durability in identifying the precise position of the mobile 

robot in various weather conditions. In addition, a robust CNN 

architecture with thousands of datasets has been proposed with 

differences in the data collection environment. 

There are three levels in the suggested process. Each level 

contains a variety of activities, including training level, testing 

level, and classification level. The PCA technique is used to 

convert a 3D LiDAR point cloud scan into a 2.5-D image 

during the training level. The Convolution Neural Network 

(CNN) algorithm is used to extract features from the 2.5-D 

images., Then, to include them in the classification level, all 

features and point cloud data are saved as a matrix. This is for 

determining the proper ground location of a mobile robot. 

Image fusion is performed at the testing level by merging two 

pictures, RGB and Depth, into a single RGB-D fusion image 

and then features extraction from the RGB-D fusion image 

using CNN. In the classification level, the tested image is 

classified using the K-Nearest Neighbors algorithm to identify 

the location of a mobile robot. 

The novelty of this paper is to improve outdoor localization 

in mobile robots using 3-D data from LiDAR and RGB-D, 

using the proposed system of PCA method, KNN algorthim, 

and deep learning algorithm. 

This paper is structured as follows: The related work in 

Section 2. In section 3, the material and methodology are 

presented. the proposed method is outlined in details in section 

4. The experimental results and discussion are presented in

Section 5. Finally, section 6 gives the conclusion.

2. RELATED WORK

Autonomous navigation is one of the most difficult tasks a 

mobile robot can perform. To navigate successfully, a mobile 

robot must be skilled in four critical elements of autonomous 

navigation: perception, localization, recognition, and motion 

control. As a result, significant progress has been made. This 

section will provide a summary of the most commonly used 

outdoor localization techniques for mobile robots. It will also 

discuss the various sensor vision techniques used to improve 

the overall precision and efficiency of the localization method, 

as well as the benefits and challenges associated with each. 

In the outdoor environment, GPS is one of the usual 
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localization solutions. However, these solutions are inaccurate 

or available in environments such as (tunnels, caves, tall 

buildings, and under trees) [8]. It can lead to errors in a few 

meters, which is unacceptable to robot driving. Furthermore, a 

travelling robot must move in a complicated world of possible 

challenges, even though it does not always have previous 

knowledge of its surroundings [9]. 

As a result of these issues, vision is already the most often 

used sensor for the outdoor position [10, 11]. However, 

optimizing robotics performance through the application of 

Machine Learning (ML) technologies has created new 

difficulties in ML. There has been an increase in interest and 

dedication in developing ML methods for robotics systems 

that rely on computer vision in recent years [12]. 

Because illumination is strongly dependent on the terrain, 

such as (sunshine, rain, clouds), outdoor lighting changes are 

a major concern for visibility. RGB cameras alone may not be 

sufficient. Current sensors, such as portable LiDAR or RGB-

D cameras, add depth information to RGB imagery, opening 

up new possibilities for developing robust and practical 

applications [13-15]. 

The research community focuses on Deep Learning (DL) in 

Localization of mobile robots. Two approaches for outdoor 

localization were presented by Nilwong et al., with an 

increasing focus on deep learning and landmark recognition. 

The first access uses a Faster Regional-Convolutional Neural 

Network to identify landmarks in the recorded image (Faster 

R-CNN). Then, using the landmarks as input, a Feedforward 

Neural Network (FFNN) is used to estimate robot position 

coordinates and compass direction. Unfortunately, the failure 

rate of orienting was extremely high, and the outcomes were 

poor. The following factors contribute to high orientation 

errors: - The proposed localization methods only needed a 

small amount of data; - During data collection, there were very 

few environmental variations [8]. Debeunne & Vivet 

presented a comprehensive study into visual-LiDAR 

Simultaneous Localization and Mapping SLAM. LiDAR-

based SLAM provides exact 3D details about the environment. 

Still, it is time-intensive and relies on insecure scan-matching 

techniques, and in rainy or textured environments, LiDAR-

SLAM performs poorly [9].  

For example, several researchers have experimented with 

determining the robot's position in various weather 

environments. Rawashdeh et al. used infrared, visual 

odometry, and depth cameras. This approach was weak, and it 

could not be used independently [16]. Outdoor navigation 

localization using simply a stereo camera was proposed by 

Tomono et al., but the findings revealed some mistakes in the 

meters. Moreover, it failed under the worst circumstances. 

Owing to the camera's small dynamic range, direct 

illumination, for example, will blacken or whiten a significant 

chunk of the acquired image. This scenario cannot see good 

edge points, resulting in considerable motion measurement 

errors [17]. 

 

 

3. METHODOLOGY 
 

To train the deep learning network and obtain the 3D dataset, 

two sensors are used mounted with the mobile robot; LiDAR 

and RGB with Depth (RGB-D) sensor. 
 

3.1 Point cloud LiDAR sensor 
 

The data obtained by a LiDAR is used to create 3D models 

and maps of structures and environments. LiDAR determines 

the structure by measuring the time it takes for signals to 

bounce off surfaces and return to the scanner [18]. After 

analysing and organising the individual readings, the LiDAR 

data becomes point cloud data. The point clouds are vast arrays 

of 3D elevation points with x, y, and z coordinates [14]. A 

standard 3D LiDAR is from the other hand, may acquire 

surroundings data with a vertical Field of View (FOV) of 30 

(±15) º and a horizontal FOV of 360º at a scanning rate of 

about 10 Hz [14]. High resolution allows the LiDAR to gather 

a large amount of valuable data in a region of long ranges. 

LiDAR is commonly used in robot systems because of these 

advantages [14]. 

 

3.2 Reduction 3D LiDAR point cloud to 2.5D image  

 

One of the most well-known and widely utilized methods is 

Principal Component Analysis (PCA). Its premise is 

straightforward: limit the dimensionality of a dataset while 

retaining as much 'variability' (i.e., statistical information) as 

possible [19]. Solving the covariance matrix obtains the major 

components. The PCs of the PCA space are calculated in this 

method in two steps. The data matrix's covariance matrix (X) 

is constructed first. Second, the covariance matrix's 

eigenvalues and eigenvectors are determined. The covariance 

matrix is asymmetric and always positive semi-definite matrix 

(i.e., X = XT). The variable variance is represented by the 

diagonal values xi, I = 1,..., M of the covariance matrix, 

whereas the off-diagonal entries as illustrated in Equation (1), 

represent the covariance between two separate variables. A 

positive covariance matrix value shows A positive correlation 

between two variables is indicated by a positive value, a 

negative correlation is indicated by a negative value, and a 

zero value indicates that the two factors are uncorrelated or 

statistically independent [20]. 

 

(

Var⁡(x1, x1) Cov⁡(x1, x2) … Cov⁡(x1, xM)

Cov⁡(x2, x1) Var⁡(x2, x2) … Cov⁡(x2, xM)
⋮ ⋮ ⋱ ⋮

Cov⁡(xM, x1) Cov⁡(xM, x2) Var⁡(xM, xM)

)  (1) 

 

The eigenvalues (𝜆) and eigenvectors (V) of the covariance 

matrix are calculated based [20]: 

 

VΣ = λV (2) 

 

The first principal component has the most giant variance 

and is represented by the eigenvector with the highest 

eigenvalue. Each eigenvector corresponds to a single primary 

component. The eigenvectors depict the directions in the PCA 

space [21]. 

 

3.3 Ground removal by rotation around Z-axis  

 

In 3D, there are a variety of techniques to express rotations. 

Euler angles, quaternions, and rotation matrices are common 

representations. Even though they require various parameters, 

these representations can describe rotations with three degrees 

of freedom [22, 23]: 

 

Rz = [
cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0
0 0 1

]  (3) 
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Rx = [

1 0 0
0 cos(θ) − sin(θ)

0 sin(θ) cos(θ)
]  (4) 

 

Ry = [
cos⁡(θ) 0 sin⁡(θ)

0 1 0
−sin⁡(θ) 0 cos⁡(θ)

]  (5) 

 

3.4 RGB-D camera 

 

Because of popular RGB-D sensors such as Microsoft's 

Kinect, showing 3D data as RGB-D images has really become 

popular in recent years. RGB-D data provides a 2.5D 

representation of the captured 3D object by including a depth 

map (D) as well as 2D color information (RGB). Although 

cheap, RGB-D data are simple yet effective representations of 

3D objects that can be used for various tasks such as identity 

recognition, pose regression, and scene reconstruction [24, 25]. 

 

3.5 Fusion image by (IHS) Transformations 

 

Image fusion is a technique used to extract useful data from 

many input photographs and merge it to create a new output 

image that is more descriptive and useful than the sum of the 

input images [26]. Image fusion reduces data size, keeps vital 

features, and provides a more accessible image [27].  

The IHS methodology has become a standard process in 

image processing for color enhancement, feature enhancement, 

pixel size optimization, and the merging of various data sets. 

The goal of combining high-resolution and hyperspectral 

remotely sensed photos is to ensure spectral data while also 

including high - spatial detail information, making the fusion 

significantly more suitable for IHS treatment [28]. Because the 

RGB to IHS conversion model employs a 3x3 matrix as its 

transform kernel, most literature considers IHS to be a third-

order process. Most literature considers IHS to be a third-order 

process. Many published studies indicated that different IHS 

transformations are used, which have significant variations in 

the matrix values, as described below. R = Red, G = Green, 

and B = Blue were used in this analysis. I = Intensity, H = Hue, 

S = Saturation, and V1, V2 = Cartesian hue and saturation 

elements [28]. 
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[
R
G
B
] H = tan−1⁡ (

V2

V1
) S =

√V1
2 + V2

2 

(6) 

 

The RGB and depth pictures are merged in the precise 

location to form the 2.5D image in IHS methods. The color-

carrying data is detached from the intensity variable in a color 

picture (Hue and Saturation). The IHS color is created by 

utilizing geometrical formulas to convert RGB points into 

matching points [29]. 

 

3.6 Deep learning algorithms 

 

Machine learning has taken a powerful turn in recent years, 

thanks to the rise of Artificial Neural Networks [30]. One of 

most impressive forms of ANN architecture is CNN [31]. The 

CNN is a hybrid of artificial neural networks and cutting-edge 

deep learning techniques. CNN's are at the heart of spectacular 

developments in deep learning. For decades, this artificial 

neural network has been used to perform various image 

detection tasks. CNN has recently piqued the interest of 

researchers from around the world, as it has demonstrated 

impressive results in a variety of computer vision and machine 

learning tasks [32]. As depicted in Figure 1, CNNs are built up 

of three layers: Convolution, pooling, and fully connected 

layers. Convolution and pooling are the first two layers that 

extract features, whereas the third, a fully connected layer, 

maps specific features into the outcome, such as classification. 

A convolution layer, a type of linear operation, is a crucial 

aspect of CNN. It is made up of a set of mathematical 

operations such as convolution. Image pixels are stored in a 

two-dimensional matrix [33]. 

 

 
 

Figure 1. The architecture of CNN [32] 

 

3.7 K-Nearest Neighbour (K-NN) algorithm 

 

For data classification tasks, distance-based algorithms are 

commonly used. One of the most widely used distance-based 

algorithms is the K-Nearest Neighbor classification (K-NN). 

This classification calculates the distances between the testing 

machine and the training data to decide the final classification 

performance. With numerical results, the standard K-NN 

classifier works well [34]. A popular distance-based 

classification method is the K-Nearest Neighbour's (K-NN) 

classification technique. The standard K-NN classification 

algorithm recognises the K-Nearest Neighbor(s) and 

categorizes numerical data records by measuring the distance 

between both the test sample and all training samples using the 

Euclidian distance [35]. 

1. Calculate the number of closest neighbours (K values); 

see Figure 2. 

2. As indicated  in Figure 3, find the distance between both 

the testing data and one of the training examples. 

 

The proximity between A and B in Euclidean 

distance = √(X2 − X1)
2 + (Y2 − Y1)

2  
(7) 

 

 
 

Figure 2. K-Nearest neighbor principle [34] 

 

3. Sort the distance using the K-th minimal distance to find 
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the nearest neighbours. 

4. Make a list of the categories of your nearest neighbours. 

5. Use the simple majority of the group of closest neighbors 

as the additional data object's prediction value. neighbours. 

 

 
 

Figure 3. The Euclidian distance to measure the distance 

between two data [35] 

 

3.8 Measuring the error 

 

To calculate the error of an approximate arithmetic circuit. 

The Error Rate (ER), Mean Square Error (MSE), and Mean 

Error Distance (MED) are used to calculate the error rate. For 

example, the discrepancy between the estimated and real sums 

S* and S is known as the error of distance (ED) [36]: 

 

ED = |S∗ − S| (8) 

 

The error rate is the number of input configurations for 

which the predicted adder produces wrong outputs (ER). As a 

result, a non-zero error gap can be calculated as: 

 

ER = P(ED ≠ 0) (9) 

 

The (MED) is the average of all error distances. The Mean 

Squares of Error (MSE) overall error distances is calculated as 

[36]: 

 
MED = E[ED] = ∑  EDi∈Ω EDiP(EDi)  (10) 

 

MSE = E[ED2] = ∑  EDi∈Ω EDi
2P(EDi)  (11) 

 

where, Ω is the total number of error distances. 

MSE is calculated as follows: if n predictions are made from 

a sample of n data, Y is the variable being forecasted, and Y ̂ 

is the predicted value [37]: 

 

MSE =
1

n
∑  n

i=1 (Yi − Ŷi)
2
  (12) 

 

 

4. PROPOSED OUTDOOR LOCALIZATION SYSTEM 

 

To improve the efficiency and reliability of a localization 

system, the proposed method uses 3-D data to determine the 

position of a mobile robot under various weather conditions. 

The proposed approach is depicted in Figure 4, which is 

formed by two sensors LiDAR and RGB-D position on a 

mobile robot for data collection for training and testing. This 

paper's proposed method is divided into three levels. There are 

several operations at the training level, testing level, and 

classification level. During training, the LiDAR sensor 

performs a scan to collect 3-D dataset. The PCA method 

converts a 3-D point cloud to a 2.5-D image. Then the feature 

is extracted from 2.5-D images using the CNN algorithm. A 

matrix is used to store all featured data, pre-processing and 

point cloud data. The RGB and Depth sensors are used in the 

testing level to obtain two images of the exact location. Using 

the IHS method, merge RGB images with Depth into an RGB-

D image to create a 2.5-D fusion image. The CNN algorithm 

extracts the features from a 2.5-D RGB-D image. Following 

that, all of the feature data is arranged in a matrix. To 

determine the correct position of the mobile robot, The test 

data is categorized alongside the training data in the 

classification level of the K-NN classifier. 

 

 
 

Figure 4. Proposed outdoor localization system 

 

 

5. EXPERIMENTAL RESULTS 

 

5.1 Collected datasets 

 

Using supervised learning, typically, a large amount of data 

is required to train a neural network. To train and test the 

proposed system, a dataset that included Image data in 

different weather conditions, depth images, and LiDAR data 

with corresponding mode labels was used. Seeing as this was 

not realized in the public domain, it was decided to employ a 

simulator to generate the data required. Simulated results are 

created using the CARLA driving simulator. CARLA is a 

testing simulator for autonomous vehicles (open-source 

simulator) [38]. CARLA was explicitly built to support the 

production, training, and testing of self-driving automated 

systems. CARLA also offers available digital assets (urban 

layouts, homes, and automobiles) built specifically for this 

purpose and can be widely accessed [38, 39]. A camera sensor 

can be attached to a mobile robot in CARLA to capture images 

at a fixed frame rate. As seen in Figure 5, the camera sensor 

can produce images in both RGB and Depth. 
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(a) RGB image 

 
(b) Depth image 

 

Figure 5. The RGB image corresponds to the Depth map 

(photos from Carla open-source simulator) 

 

The simulator is capable of simulating a variety of weather 

conditions. Rain with puddles light reflected, cloud cover that 

darkens the ambience, and simulated sunny weather that 

produces fake lens flares whereas the sun is in the frame are 

all examples. In addition, data on a variety of environmental 

conditions is collected [38], seen in Figure 6. 

 

 
(a) Rainy weather                       (b) Sunny weather 

 
(c) Cloudy weather                         (d) Clear weather 

 

Figure 6. Image visualization in a variety of weather 

conditions (photos from Carla open-source simulator) 

 

LiDAR sensors can be reproduced in CARLA. The upper 

and lower farms of view, as well as the number of channels, 

total size, and the number of points in each direction can be 

customized. During scan capture, the simulation region can be 

frozen, resulting in a 360-degree scan without the need for 

velocity adjustments. Figures 7 and 8 are two examples of this. 

To create the data sets used in this study, a mobile robot 

equipped with LiDAR sensor and RGB-D camera was set to 

travel around a map on autopilot. The data set encompasses 

roughly 120,000 m2 of a map, including the suburban 

neighbourhoods, downtown area, and wooded areas. Two 

training data sets were obtained, one with 15000 images, 5000 

images for each weather condition and Depth picture pairs, 

and 46,741 LiDAR frames. As seen in Figure 9, this city 

district is divided into nine streets with a street between them. 

Each street has two sections: the begin and the end, as seen 

in Table 1. 

 
 

Figure 7. LiDAR scan as a point cloud (photos from Carla 

open source simulator) 

 

 
 

Figure 8. LiDAR analysis after MeshLab display [38] 

 

 
 

Figure 9. Carla simulator's suggested street numbers 

 

5.2 CNN localization 

 

The CNN for localization has a total of 12 layers. With a 

brief training period, a 12-layer CNN with a 224 x 224 input 

image was designed. The optimizer Stochastic Gradient 

Descent with Momentum (SGDM) was used in this network. 

Table 2 shows the analysis result of the network design. With 

the K-NN classifier, there are 16 classes based on the number 

of streets identified in Figure 9. 

Figure 10 illustrates the configuration of the implemented 

CNN. 

 

 
 

Figure 10. CNN localization with 12-layers 
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Table 1. Division of streets and data for each street 

 

Item 
The name of the 

street 

No. of LiDAR frame 

estimates for per street 

Each street has a certain number of test images (each weather conditions) 

Cloudy Rainy Sunny 

1 The begin of street 1 750 20 15 15 

2 The end of street 1 1600 20 36 35 

3 The begin of street 2 900 20 20 15 

4 The end of street 2 3300 70 60 80 

5 street 3 750 10 15 15 

6 The begin of street 4 1750 36 30 36 

7 The end of street 4 1900 30 20 28 

8 The begin of street 5 2650 55 45 60 

9 The end of street 5 1300 20 30 35 

10 Street 6 950 30 15 15 

11 The begin of street 7 3250 40 95 50 

12 The end of street 7 1550 28 65 30 

13 Street 8 1600 40 30 40 

14 The begin of street 9 1200 15 30 15 

15 The end of street 9 1300 10 45 15 

16 Between street 1000 30 25 30 

 

Table 2. Analysis result for the CNN architecture 

 
 Name Type Activations Learnables 

1 
Imageinput 

224×224×3 image with ‘zerocenter’ normalization 
Image input 224×224×3 - 

2 
CONV_1 

2 3×3×2 convolutions with stride [1 1] and padding [1 1 1 1] 
Convolution 224×224×2 

Weights 3×3×3×2 

Bias       1×1×2 

3 
Batchnorm_1 

Batch normalization with two channels 
Batch Normalization 224×224×2 

offset   1×1×2 

scale    1×1×2 

4 
Relu_1 

ReLU 
ReLU 224×224×2 - 

5 
Maxpool_1 

2×2 max pooling with stride [2 2] and padding [0 0 0 0] 
Max Pooling 112×112×2 - 

6 
CONV_2 

32 3×3×2 convolutions with stride [1  1] and padding [1  1  1  1] 
Convolution 112×112×32 

Weights 3×3×2×32 

Bias      1×1×32 

7 
Batchnorm_2 

Batch normalization with 32 channels 
Batch Normalization 112×112×32 

offset   1×1×32 

scale    1×1×32 

8 
Relu_2 

ReLU 
ReLU 112×112×32 - 

9 
Maxpool_2 

2×2 max pooling with stride [2 2] and padding [0 0 0 0] 
Max Pooling 56×56×32 - 

10 
FC 

16 fully connected layer 
Fully Connected 1×1×16 

Weights 16×100352 

Bias       16×1 

11 
Softmax 

softmac 
Softmax 1×1×16 - 

12 
Classoutput 

Crossentropex with ‘between’ and 15 other classes 
Classification output - - 

 

 
 

Figure 11. The result of training time expended and training accuracy 
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5.3 Network training and analysis 

 

The MatLab code was created on a PC equipped with a Core 

(TM) Intel (R) i5-8250U processor. 1.80 GHz RAM 8 GB, 

UHD Graphics 620. It took four epochs to process the dataset 

containing 46,741 LiDAR frames. Each epoch has 70 

iterations, with a maximum of 280 iteration numbers possible 

and a learning period rate of 3*10-4. The preparation took 415 

minutes, containing 70% of the dataset for training and 30% 

of the test dataset. As seen in Figure 11, the accuracy obtained 

is 97.46%. 
 

5.4 Result of IHS transformation 
 

When merging RGB and Depth images, the IHS method has 

an impact. The Intensity of a pixel in a depth picture varies 

based on its brightness. Figure 12 shows how the Hue, 

Saturation, and Intensity combine in the 2.5-d images in 

various weather conditions. The change in the 2.5D images is 

noticed for these three different weather conditions, which led 

to the strength of the approach in identifying the mobile robot's 

correct position in these weather changes. 
 

    
IHS in sunny weather 

     
IHS in rainy weather 

   
IHS in cloudy weather 

 

Figure 12. Creating a 2.5D image by merging two RGB with 

different conditions and depth images 
 

5.5 Evaluation results 
 

To check the performance of the proposed approach of PCA 

method with IHS and using the K-NN algorithm, it is 

necessary to obtain a high-quality and precise localization 

sample that can be compared to reality on the ground. Tested 

nine states with random locations in the city under different 

weather conditions are listed in Table 3: 
 

Table 3. Summary of test results in various weather 

conditions (Cloudy, Rainy and Sunny weather) 
 

State 
The correct localization 

prediction 
MSE 

1 Between streets 0.0432 

2 Beginning of street 1 0.0472 

3 Beginning of street 2 0.0421 

4 Street 6 0.0360 

5 End of street 9 0.036 

6 Street 3 0.0216 

7 End of street 1 0.0545 

8 End of street 5 0.0678 

9 Street 6 0.036 

Mean error 0.0427 

Table 4. A comparison of the proposed method to other 

methods 

 

Method 
Average 

error 

Maximum 

error 

Training 

time 

Data 

set 

Fingerprinting 

positioning 

method + 

IEEE802.11a 

platform, i.e., 5 

GHz in ISM 

band [40] 

20.12 m 20.12 m -- -- 

Particle filter 

based on 

Monte Carlo 

Localization 

[17] 

0.6 m 2.7 m - 
16530 

images 

ICP+ 

PointNetLK+ 

GoogleNet [23] 

18.3 m 131.6 m 
4200 

minutes 

10400 

images 

Proposed 

method 

CNN +PCA 

+K-NN 

0.6 m 1.09 m 
415 

minutes 

46741 

frame 

LiDAR 

 

CARLA achieved a frame rate of 30 frames per second (FPS) 

in one meter to calculate the Mean Error Distance. From 

equations (10 and 11), MED = 0.6 meters. 

The proposed approach is superior to the research method 

is depicted in Table 4. 

Table 4 reference 40 used the technique positioning system 

WifiLOC, which is currently being developed as a research 

tool at the University of Zilina. WifiLOC estimates a mobile 

device's location using RSS information from nearby Wi-Fi 

APs. The method is built on the fingerprinting positioning 

algorithm and earlier RSS data. The proposed approach does 

not rely on a picture of deep learning technologies, so the error 

rate is respectively high. In reference 17, Only use a stereo 

camera for vision-based localization in outdoor environments. 

A particle swarm optimization based on Monte Carlo 

Localization is used in the localization process, which fails in 

extreme cases. For example, due to the camera's restricted 

dynamic range, direct sunlight will saturate a significant 

portion of the captured image to black or white. Researchers 

discovered that this problem is equivalent to wheel slip in 

wheel odometry and categorized it as an abducted robot 

problem to overcome this limitation. It also notes that the 

average error is almost equal to the proposed method, but the 

maximum error is 2.7 m, and the proposed method does not 

exceed 1.09 m. While in reference 23, the (ICP) algorithm was 

used, the PointNetLK network was utilized in registration, and 

GoogleNet was used for the RGB-D Neural network. Also, 

notice that average error and training time are very high 

compared to the proposed method. The proposed system used 

a deep learning technique that took 415 minutes to train. 

Although the dataset was 46,741 LiDAR frames to obtain the 

accuracy of 97.46%, MSE equals 0.0427, and the Mean Error 

of Distance equals 0.6 meters using the PCA method for the 

fusion picture IHS is used the K-NN classifier. The findings of 

the proposed work reduce the training time, are more accurate, 

and reduce the error rate. 

 

 

6. CONCLUSION 

 

The mobile robot localization system described in this paper 
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is designed to address the problem of robot location loss in the 

outdoor surroundings in different weather conditions caused 

by various factors that influence the sensors mounted on the 

robot. As a consequence, the location is determined wrongly. 

Thus, with the help of Deep Learning algorithms, 3-D sensors 

to achieve greater precision is proposed. Training, testing, and 

classification are the three levels of the planned architecture. 

This method employs PCA to reduce dimensions and rotate 

the point cloud with 3-D LiDAR, the IHS method produces the 

2.5-D RGB-D fusion signal. In addition, the K-NN algorithm 

to obtain high-accuracy results with minimal training time. 

The results obtained are compared with other algorithms' 

findings that improved with 97.46% accuracy, MSE of 0.0427, 

MED equals 0.6 meters. Furthermore, the training time is 

reduced to 415 minutes, which keeps costs down by lowering 

computing resources without losing accuracy. 
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