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Internet of Things (IoT) based real-time applications are highly prone to sensor faults 

because of their deployment in a risky environment. One of the important applications of 

IoT that is in great demand in this modern era is the air quality monitoring system because 

of the increase in air pollution over the years around the globe. Hence handling the 

reliability issue of air quality sensors is of great concern. In this article, a data based diverse 

fault detection and classification technique is implemented to overcome the sensor fault 

issue involved in air quality monitoring systems. The proposed work is a two-phase process; 

first, a Gaussian Hidden Markov Model (GHMM) is used to perform sensor fault detection 

on real-time air quality sensor data to detect the presence of fault in sensors followed by 

performing sensor fault classification using a Support Vector Machine (SVM) on the faulty 

sensor data obtained from fault detection to identify the most difficult to find sensor fault 

types like ‘Out of bounds’ and ‘Spike fault’. The proposed technique efficiently carries out 

sensor fault detection and classification with an overall accuracy of 99.48%. Compared to 

Machine Learning (ML) algorithms like Logistic Regression (LR), Naive Bayes (NB), and 

Multi-Layer Perceptron (MLP) the diverse proposed technique works well with a precision 

of 99.50%, recall of 99.08%, and an F1-score of 99.53%. 
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1. INTRODUCTION

Air pollution is creating a global concern in this modern era 

because it affects the well-being of humans, ecosystems, etc., 

around the world. Hence monitoring and analyzing the level 

of air pollutants around the world holds high priority, for 

which a portable, cost-effective and efficient air quality 

monitoring system based on the Internet of Things (IoT) is 

used. The IoT based monitoring system can effectively detect 

the air pollutants like carbon monoxide (CO), nitrogen 

dioxide(NO2), ozone (O3), sulfur dioxide (SO2), particulate 

matter (PM2.5), methane (CH4) [1], etc., present in the 

environment through sensors. It can also detect the level of 

temperature, humidity, and air movements in the environment 

[2, 3]. It is imperative that the IoT based air quality system 

must ensure reliability throughout the process because the data 

from the air quality sensors decide the current condition of the 

environment [4]. But the sensors involved in the IoT 

environment are highly prone to faults. The sensor fault 

includes hard faults and soft faults were in the former fault the 

sensor nodes could not transfer data to the neighboring or sink 

node whereas in the latter fault the sensor nodes transfer the 

faulty data [5]. The soft faults are of serious concern because 

the user may end up receiving fault data believing it to be 

normal sensor data leading to false analyses of the air 

condition. Some of the major sensor fault type includes offset 

fault, gain fault, stuck-at fault, out of bounds [6], spike fault, 

noise fault, data loss fault, and random fault [7]. 

Hence the reliable working of the air quality monitoring 

system is guaranteed by implementing fault detection and 

classification on air quality sensor data by applying machine 

learning (ML) techniques. The ML algorithms can effectively 

handle and analyze a huge amount of dynamic sensor data [7]. 

The learning algorithms, based on the provided data grasp 

pattern automatically, identify complex models and make 

intelligent decisions. The ML techniques are categorized into 

three kinds that incorporate supervised learning, unsupervised 

learning, and semi-supervised learning [8, 9]. Some of the ML 

algorithms that have accomplished fault detection and 

classification impactfully on sensor data are k‐ Nearest 

Neighbors (k-NN), Support Vector Machine (SVM) [10], 

Multi-Layer Perceptron (MLP) [11], Random Forest (RF), and 

Decision Tree (DT), Neural Network (NN) [12], Principal 

Component Analysis (PCA), k-means clustering, etc., The 

evaluation assessment of major ML techniques involved in the 

air quality monitoring system is done by using the confusion 

matrix [13]. The efficient analysis of the proposed work is 

fulfilled using the metrics like precision, recall, F1- score, and 

accuracy. 

Figure 1 demonstrates the system model of the proposed air 

quality monitoring system. The air quality sensors used in the 

monitoring system include a temperature sensor, humidity 

sensor, carbon monoxide (CO) sensor, methane (CH4) sensor, 

and particulate matter 2.5 (PM2.5) sensor. The air pollutant 

data perceived by the air quality sensors are summarized and 

transmitted using the Node Micro Controller Unit 

(NodeMCU) via the internet to the client's Personal Computer 

(PC), Personal Digital Assistant (PDA), smartphone, or the 

cloud google sheet, from there the necessary data analyzes, 

aggregation and decision making needed by the client can be 

done. The protocols used to support the monitoring system for 

the secure sensor data transmission include ipv6 over Low-

Power Wireless Personal Area Networks (6LoWPAN), 

LTE/4G, etc. 
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Figure 1. System model of air quality monitoring system 

 

Table 1 denotes the air quality sensor characteristics like 

connectivity type and data detection limit of sensors like 

temperature sensor, humidity sensor, CO sensor, CH4 sensor, 

and PM2.5 sensor considered for the air quality monitoring 

system. 

 

Table 1. Representing air quality sensor properties 

 
Sensors Connectivity Detecting Range 

Temperature sensor Digital 0-50℃ 

Humidity sensor Digital 20%-90% 

CO sensor Analog 20ppm-2000ppm 

CH4 sensor Analog 200ppm-10000ppm 

PM2.5sensor Analog 0-1000μg/m3 

 

The main contribution of the proposed technique includes, 

❖ Implementing a novel diverse sensor fault detection 

and classification technique on real-time sensor data by 

combining both GHMM and SVM. 

❖ This diverse technique successfully classifies both 

the ‘Out of bounds ‘(i.e. sensor data is outside its usual 

detection range) and ‘Spike fault’ (i.e. sudden increase in the 

sensor data than its expected data series) with the utmost 

accuracy of 99.48%. 

❖ This novel approach makes an evident impact in 

reducing the processing and transmission overhead of the IoT 

environment. 

The remaining section of this article is disbursed as follows: 

The various fault diagnosis approaches were analyzed in 

section 2. The proposed diverse technique is defined in section 

3. The outcome and analyses of the ML techniques are carried 

out in section 4. Lastly, section 5 provides an overview of the 

entire paper. 
 

 

2. RELATED WORK 

 

Wang et al. [14] have described a category-based 

calibration approach (CCA) for fault tolerance in air quality 

monitoring sensors. Here the calibration approach uses 

multiple regression ML techniques like Least Absolute 

Shrinkage and Selection Operator (LASSO), RF, Extreme 

Gradient Boosting (XGB), and Light Gradient Boosting 

Machine (LGBM) to improve the accuracy and robustness of 

the air quality sensor. The CCA initiates two fault-tolerant 

modules which include classification tolerance and sample 

tolerance. The first fault tolerance module reduces the 

misclassification of sensor data by the regression models and 

the second module enhances the robustness of unique models. 

Here the data of carbon monoxide (CO) and Ozone (O3) 

sensors were considered for the evaluation of CCA. Compared 

to other machine learning algorithms the LASSO algorithm 

shows better confidence degree λ=1 using CCA. The Mean 

Absolute Error (MAE) and Symmetric Mean Absolute 

Percentage Error (SMAPE) are used to measure the 

achievements of the suggested approach. 

Jan et al. [15] have implemented a distributed sensor-fault 

detection and diagnosis framework using machine learning for 

IoT and Cyber Physical Systems (CPS). Here the Stacked 

Auto- Encoders (SAE) are used to convert the input signal of 

the Temperature-to-Voltage Converter sensor into a low 

dimensional feature vector and that is given to the SVM to 

conduct fault detection. The faulty sensor data from the fault 

detection block is given as input to the Fuzzy Deep Neural 

Network (FDNN) of the fault diagnosis block to classify the 

type of fault like drift, bias, precision degradation, spike, and 

stuck faults. The working of the framework is assessed based 

on the metrics like detection accuracy, Area Under the ROC 

Curve (AUC-ROC), false positive rate, and F1-score. In this 

paper, the SVM has effectively done fault detection with an 

accuracy of 99% and the FDNN has executed the fault 

diagnosis with up to cent percent accuracy.  

Saeed et al. [16] have elucidated a machine learning based 

ensemble technique called extremely randomized trees to 

carry out fault diagnosis on Wireless Sensor Networks (WSN). 

Here the extra-tree based diagnostic scheme built different 

decision trees based on the sensor data and combine those 

results to effectively detect faults like hard over, drift, spike, 

erratic, data-loss, stuck, and random fault. Here the dataset 

considered for the fault diagnosis is the multi-hop networks 

indoor dataset from which the extremely randomized trees 

obtain the sensor data as input and detect the faults in the 

sensors with an accuracy of 81.20%. Compared to the other 

machine learning algorithms like SVM, RF, MLP, and DT, the 

explained ensemble learning scheme work better with respect 

to accuracy, precision, and F1-score. 

Lahdhiri et al. [17] have developed an online data-driven 

fault diagnosis technique for nonlinear industrial process 

monitoring systems like air quality monitoring systems. Here 
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the sensor fault diagnosis takes place as a two-step process, 

first online Reduced Rank Optimized Kernel Principal 

Component Analysis (RR-KPCA) technique is applied for 

sensor fault detection and next elimination sensor 

identification (ESI-RRKPCA) is applied for sensor fault 

isolation. The developed approach is applied to the air quality 

monitoring network (AIRLOR) where the faults of air quality 

sensors like Ozone concentration (O3), Nitrogen oxide (NO), 

and Nitrogen dioxide (NO2) were efficiently detected. 

Gupta et al. [18] have implemented a nature-inspired 

approach called Improved Fault Detection Crow Search 

Algorithm (IFDCSA) for effectual fault detection in WSNs. 

Here the real-world datasets considered for detecting sensor 

faults are intel lab data, multi-hop labeled data and 

sensorscope data in which the sensor faults are injected based 

on the crow search algorithm. The fault injected dataset is 

provided as input to the RF algorithm that successfully 

classifies sensor faults like stuck‐at fault, drift fault, offset 

fault, gain fault, noise and spikes. Compared with other 

machine learning algorithms like RF, k‐NN, DT, and zidi 

model, the IFDCSA with RF algorithm executes better with an 

accuracy of 99.94% with very less features. 

Mohapatra et al. [19] have explained an improved negative 

selection algorithm (INSA) with SVM to successfully carry 

out fault diagnosis in WSN. It is a two-phase process that 

includes fault detection done by using INSA where the faulty 

sensor nodes are detected followed by fault classification 

performed by using multiclass SVM where the type of sensor 

faults like hard permanent, soft permanent, soft intermittent, 

and soft transient faults. The assessment metrics considered 

for this technique are Fault Detection Accuracy (FDA), False 

Alarm Rate (FAR), False Positive Rate (FPR), Diagnosis 

Latency (DL), Energy Consumption (EC), Fault Classification 

Accuracy (FCA), and False Classification Rate (FCR). This 

technique successfully diagnoses sensor faults in WSN with 

99.31% FDA, 4.01% FAR, and 0.69% of FPR. 

Zidi et al. [20] have suggested an SVM classification 

method for the effective detection of sensor faults in WSN. 

The SVM method efficiently detects faults like offset fault, 

gain fault, stuck-at fault, out of bounds fault, and random fault. 

The evaluation metrics considered for this method include 

Detection Accuracy (DA) and FPR. The SVM method detects 

faults in sensor networks with an accuracy exceeding 99% and 

a very less FPR when compared to other techniques like the 

Hidden Markov Model (HMM), Spatially Organized 

Distributed Echo State Networks (SODESN), Naive Bayes 

(NB) classifier and cloud.  

 

 

3. DIVERSE FAULT DETECTION AND 

CLASSIFICATION TECHNIQUE 

 

3.1 Air quality sensor data 

 

The air quality sensor data that is used for conducting fault 

detection and classification is the real-time sensor data that is 

collected over a period using an air quality monitoring system 

based IoT setup. The sensor data are collected using various 

air quality sensors like temperature and humidity sensor, CO 

sensor, CH4 sensor, and dust particle sensor and in the 

proposed technique the fault detection and classification is 

done on the data obtained from humidity air quality sensor. 

Figure 2 represents the real-time air quality monitoring 

system setup using nodeMCU. The air quality sensors are 

connected with nodeMCU through which CO level, CH4 level, 

dust particle density, temperature, and humidity present in air 

are stored in the google sheet and in real-time the data are 

displayed using Organic Light Emitting Diode (OLED) 

display. 

 

 
 

Figure 2. Real-time air quality monitoring system setup 

using NodeMCU 

 

3.2 Sensor fault detection 

 

The first phase of the proposed diverse technique is fault 

detection which is done by using the GHMM. 

 

3.2.1 Gaussian hidden markov model 

Here the observed humidity sensor data (s1,s2,s3,s4,…..,sn) 

input that follows gaussian distribution is fed into the GHMM 

algorithm to carry out fault detection. Here the algorithm 

predicts the state to which the sensor data input belongs is 

either “sensor normal” or “sensor faulty” with utmost efficacy. 

The GHMM for fault detection is represented as follows, 

 

( ) ( )| , , 1,2,3,...
i ii i H HS H N i n  =

 
(1) 

 

In Eq. (1) Si=(s1,s2,s3,s4,…..,sn) represents the humidity 

sensor input that follows the normal distribution (N) and 

Hi=(sn, sf) represents the two hidden states “sensor normal” 

(sn) and “sensor faulty” (sf) where μHi, ∑Hi represents the mean 

and covariance parameters at state Hi. 

 

( ), ,A B =
 

(2) 

 

In Eq. (2) A={asn,sf} defines the probability matrix(i.e. the 

transition probability) of state “sensor normal” (sn) and 

state“sensor faulty”(sf) and B = {bsn(μi, ∑i, (s1,s2, . . . . sn)) & 

bsf(μj, ∑j, (s1,s2, . . . . sn))} defines the emission probability 

parameters of state ‘sn’ and state ‘sf’(i.e. probability that an 

emitted humidity sensor data become a part of particular state), 

were μi, ∑i represents the mean and covariance parameter that 

depends on state ‘sn’ and μj, ∑j represents the mean and 

covariance parameter that depends on state ‘sf’ and π = {πi} is 

the initial state distribution. Here the parameters of A and B 

are iteratively re-estimated for every input sensor data. 

Figure 3 depicts a finite state space and homogeneous 

HMM where the observed distribution of humidity sensor 

input s1,s2,s3,s4,…..,sn follows the normal distribution. In 

general, the total transition probability between two states is 

represented as ‘1’, and the probability that the sensor will 

move from state ‘sn’ to ‘sf’ is ‘p’ and from ‘sf’ to ‘sn’ is ‘q’. 

The probability that the sensor will remain in state ‘sn’ is ‘1-

p’ and for state ‘sf’ it is ‘1-q’. The state of the sensor is 
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predicted by the HMM as either “sensor normal” (sn) or 

“sensor faulty” (sf) for every sensor input. 

 

 
 

Figure 3. Representing HMM for fault detection 

 

3.3 Sensor fault classification 

 

The second phase of the proposed technique is the fault 

classification that is accomplished by applying the SVM 

algorithm [21]. 

 

3.3.1 Support vector machine 

The SVM classifier technique is a supervised ML algorithm. 

It takes the output of the fault detection phase as input and 

performs fault classification effectively. Here the SVM splits 

the faulty sensor data into two types of fault classes, either as 

‘out of bounds’ or as ‘spike fault’ by finding an optimal 

hyperplane that predicts the fault type with utmost accuracy. 

The mathematical representation of the hyperplane that do the 

fault classification is represented using the formula, 

 

. 0T
iw s b+ =

 
(3) 

 

In Eq. (3) w is the unit vector representing the normal 

direction of the decision boundary called the hyperplane and si 

represents the series of humidity data and b denotes the bias. 

The support vectors formula for fault prediction is represented 

as follows, 

 

( ) 1, . 0ih s if w s b= + + 
 

(4) 

 

( ) 1, . 0ih s if w s b=− + 
 (5) 

 

Eq. (4) denotes the data points above or on the hyperplane 

classified as class +1 (i.e., out of bounds) and Eq. (5) denotes 

the data points below the hyperplane classified as class -1(i.e., 

spike fault). The decision function of SVM for accurate fault 

classification is represented using the mathematical expression, 

 

0,

0

( ) ( ( ) )

N
T

i i i i

i

f s sign s s b
=

= +
 

(6) 

 

In Eq. (6), si represents the faulty humidity sensor data input 

vector where the type of sensor fault has to be classified and 

N indicate the count of support vectors that were acquired 

prior to the fault classification and the parameters αo,i denotes 

the best support vector selected for fault prediction. 
 

3.4 Evaluation metrics 
 

The assessment metrics like precision, recall, F1-score, and 

accuracy are computed based on the confusion matrix in 

evaluating the performance of the proposed technique. The 

expressions for the evaluation metrics calculation are 

represented as follows, 
 

TP
Precision

TP FP
=

+
 

(7) 

 

Re
TP

call
TP FN

=
+

 

(8) 

 

2* *
1

precision recall
F score

precision recall
− =

+  
(9) 

 

TP TN
Accuracy

TP FP TN FN

+
=

+ + +  
(10) 

 

From Eqns. (7), (8), (9), and (10) the efficient evaluation of 

the fault detection and classification technique is done. Here 

True Positive (TP) indicates the exactly predicted spike faults, 

True Negative (TN) indicates the exactly predicted out of 

bounds, False Positive (FP) indicates the falsely predicted out 

of bounds and False Negative (FN) indicates the falsely 

predicted spike fault using the confusion matrix. 
 

Algorithm 1 Sensor fault detection and classification algorithm. 

Input: Real-time humidity sensor data represented as s1,  

          s2, s3, . . . . . . . . . , sn. 

Output: Classified sensor fault type as either ‘out of   

             bounds’ or ‘spike fault’. 

Procedure: 

Step 1: Obtain the humidity sensor data (s1, s2, . . . ., sn)    

           from the real-time air quality monitoring setup. 

Step 2: GHMM is employed to conduct the sensor fault 

           detection using the Eqns. (1 & 2). 

           if the humidity data is inside the expected data  

           series limit.                                                                   

          then the sensor is “sensor normal”.           

            else the sensor is “sensor faulty”. 

Step 3: Execute the sensor fault classification by  

           employing the SVM algorithm using the  

           Eqns. (3-6) to the detected faulty output from  

           step 2. 

           if the faulty humidity data is outside its detection  

           limit. 

           then the sensor fault is “out of bounds”. 

           else if there is a sudden increase in the sensed data 

           than its expected data series. 

           then the sensor fault is the “spike fault”. 

Step 4: Result. 
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Here in the diverse fault detection and classification 

technique, both the GHMM and SVM are merged effectively 

with utmost prediction accuracy. 
 

 

4. RESULT AND DISCUSSION 

 

The real-time air quality data is obtained from the sensors 

like temperature and humidity sensor, CO sensor, CH4 sensor, 

and dust particle sensor that were implemented together as an 

air quality monitoring system setup in a heavy traffic region. 

Here the fault detection and classification is done on the 

humidity sensor. The humidity data collected over a period 

using the air quality monitoring system is injected with 20% 

of fault data for effective fault diagnosis. Here first sensor data 

is fed into the GHMM to carry out fault detection followed by 

achieving fault classification using SVM on the output of 

GHMM. 

Figure 4 represents air quality data from various sensors like 

CO sensor, CH4 sensor, PM2.5 sensor, humidity, and 

temperature sensor collected over a while in a real-time heavy 

traffic region. The Global Positioning System (GPS) 

coordinates for the region around which the air quality data 

were collected are 8°08’47.76” N and 77°19’57.54” E. 

 

 
 

Figure 4. Represents sensor data from a real-time air quality 

monitoring system (8°08’47.76” N & 77°19’57.54” E) 

 

In Figure 5, using the confusion matrix the overall analyses 

of the implemented sensor fault detection and classification 

technique is evaluated effectively. The diverse technique 

executes better with a good accuracy score of 99.48%. 

 

 
 

Figure 5. Proposed technique evaluation using confusion 

matrix 

Table 2 depicts the performance comparability of the 

diverse technique with ML techniques like LR, NB and MLP. 

Here the proposed work outraces the other techniques with 

99.48% accuracy followed by a precision of 99.50%, recall of 

99.08% and F1-score of 99.53%. 

 

Table 2. Performance assessment of various ML algorithm 

 

Algorithm Precision (%) Recall (%) 
F1 score 

(%) 

Accuracy 

(%) 

LR 63.75 43.57 51.77 54.73 

NB 76.10 78.89 77.47 74.42 

MLP 96.56 92.20 95.94 95.65 

GHMM+SVM 99.50 99.08 99.53 99.48 

 

Figure 6 depicts the precision graph comparison of the 

proposed fault detection and classification technique with 

algorithms like LR, NB, and MLP. The proposed work 

executes well with a precision score of 99.50% when 

compared with the ML algorithms like LR, NB, and MLP 

whose precision scores are 63.75%, 76.10%, and 96.56%. The 

proposed diverse technique achieves better precision by 

35.75%, 23.4%, and 2.94% than the other ML techniques. 

 

 
 

Figure 6. Bar graph for precision comparison 

 

Figure 7 explains the recall graph comparability of the 

diverse technique with algorithms like LR, NB, and MLP. The 

proposed work surpassed other algorithms with a recall score 

of 99.08% than the available ML algorithms whose recall 

scores are 43.57%, 78.89%, and 92.20%. The proposed fault 

detection and classification technique excel by 55.51%, 

20.19%, and 6.88% than the other ML techniques with respect 

to recall score. 
 

 
 

Figure 7. Bar graph for recall comparison 
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Figure 8 represents the comparison graph of F1-score of the 

diverse technique with the ML techniques like LR, NB, and 

MLP. The F1-score is a blend between precision and recall, 

which ensures an unbiased proposed model in executing the 

sensor fault detection and classification. The proposed 

technique accomplishes a better F1-score of 99.53% than the 

available ML algorithms that have the F1-scores of 51.77%, 

77.47%, and 95.94% respectively. The proposed fault 

detection and classification technique exceed by 47.76%, 

22.06%, and 3.59% than the available ML concepts in terms 

of F1-score. 

 

 
 

Figure 8. Bar graph for F1-score comparison 

 

Figure 9 represents the comparison graph for accuracy 

between the ML concepts like LR, NB, and MLP with that of 

the proposed diverse sensor fault detection and classification 

technique. The proposed work is implemented better with an 

accuracy of 99.48% than the available algorithms and their 

accuracies are 54.73%, 74.42%, and 95.65%. The proposed 

technique outraces other ML algorithms by 44.75%, 25.06%, 

and 3.83% with respect to accuracy. 

 

 
 

Figure 9. Bar graph for accuracy comparison 

 

The proposed technique completed sensor fault detection 

and classification with utmost accuracy thereby reducing the 

data transfer overhead of the air quality monitoring network 

by ¼ times in comparison with available ML concepts by 

communicating only the faulty sensor data to the sink nodes. 

Thereby the overall performance of the entire air quality 

network gets enhanced.  

5. CONCLUSION 
 

In this article, a diverse fault detection and classification 

technique has been implemented for air quality monitoring 

systems. Here the proposed task is conducted as a two-phase 

process, first, the fault detection is executed to identify faulty 

sensor data using GHMM. In the second phase, fault 

classification is done by SVM to classify the type of sensor 

fault. The proposed technique works well with an accuracy of 

99.48%. And also evaluation assessment is carried out with the 

diverse technique and the ML concepts like LR, NB, and MLP 

based on the performance metrics where the suggested 

technique achieves a better precision of 99.50%, recall of 

99.08%, and F1-score of 99.53%. 

Future work of research focus on conducting efficient fault 

diagnosis on distinct sensor data type and also on more fault 

types classification involved in air quality monitoring systems. 
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