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Machining of Inconel-800, a superalloy material that is difficult-to-cut materials, has 

received the special attention of many scientists worldwide. This paper adopts the 

advanced and industry-accepted lubrication method that is minimum quantity 

lubrication technique (MQL) which enhances nanoparticle particles to improve the 

machinability of Inconel-800 superalloy material and reduce the quantity of 

conventional cutting fluids. The metamodel namely Radial basis function (RBF) was 

used for expressing the relationship between cutting velocity, feed per tooth, depth of 

cut, and corner radius to two quality factors, including cutting force and specific cutting 

force. A combination of the RBF approximate model and Non-dominated Sorting 

Genetic Algorithm II (NSGA-II) algorithm was applied to find out optimal global 

solutions for the multi-objective optimization problem. The results show that this study 

plays a part in supporting scientists and engineers to understand machining difficult-to-

cut materials better and minimize waste to the environment towards sustainable and 

environmentally friendly machining. 
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1. INTRODUCTION

With the development of engineering materials, difficult-to-

cut materials were born to meet the different requirements of 

each specific field [1]. Inconel-800 super-alloy is one of the 

typical hard-to-cut materials. The outstanding features of the 

material can be mentioned as superior toughness, tremendous 

tensile strength, immeasurable corrosion resistance, and high-

temperature strength always attract users to find suitable 

machining methods to increase the machinability. So, the 

machining difficult-to-cut materials also revealed a concern 

for scientists and engineers [2]. 

The minimum quantity lubrication (MQL) cooling 

technique uses very small amounts of cutting fluids (50 - 500 

mL/h) that are delivered to the cutting zone as a mist cooling 

under the required increased air pressure changing from 2 to 6 

bar from the nozzle [3]. MQL is an effective cooling technique 

that is of interest to scientists. A technological breakthrough 

was made to further enhance fluid cutting properties by using 

minuscule solids particles (less than 100 nm) to add to the 

cutting fluid or lubrication in 1995 [4]. That cooling technique 

is called nanofluid MQL, for which Choi is the originator. 

From then on, a broad research direction for researchers has 

been developed in applying nanoparticles for minimum 

quantity lubrication machining [5]. The invention of 

nanoparticle-based cutting fluid in the machining process 

support overcoming the weakness of cutting fluids increases 

thermal conductivity, density, and viscosity of the cutting 

fluids. It also significantly enhances the heat transfer process 

in the cutting zone in machining [6]. 

Many materials have extensively studied the investigation 

and modelling of cutting force properties [7, 8]. However, 

studying the influence of parameters on cutting force for newly 

Inconel-800 superalloy material is also challenging for 

researchers, and there are few articles written on the topic. In 

addition, multi-objective optimization with opposing objects, 

including cutting force, specific cutting force, and material 

removal rate, is also worth discussing. 

According to the literature currently available [8-11], 

studies on modeling and optimizing process parameters for 

multi-objectives in the field of metal processing focus on the 

manufacturing industries. Response Surface Methodology 

(RSM), artificial neural network (ANN), Kriging model, and 

RBF are the most common models used to illustrate the 

interaction between input and output parameters. Because of 

its versatility and dependability, RBF is the most widely used 

by engineering researchers. 

There are various techniques commonly employed in 

engineering to tackle the optimization problem. Some generic 

optimization approaches, such as Taguchi [8, 12] and Grey 

Relational Analysis (GRA) [13, 14], are used in metal cutting; 

nevertheless, these techniques cannot provide optimal results 

with a "really optimal" solution considering that they only 

optimize depending on the level of control factors. Mia and 

co-authors [15, 16] typically employ the desirability function 

technique for simultaneous multi-response optimization. They 

used a satisfying function technique for multi-objective 

optimization of various cutting circumstances, such as dry, wet, 
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cryogenic cooling, and MQL. Because revolution optimization 

techniques are adequate, flexible, easy, and compelling, 

researchers have steadily used them to handle multi-objective 

optimization problems. The Archive-based Micro Genetic 

Algorithm (AMGA) [17], genetic algorithm (GA) [18], PSO 

[6], and NSGA-II [19] are the optimization algorithms. 

Consequently, our investigation employed the RBF 

approximate model to model the relationship between 

parameters and machining response. The Al2O3 nanofluid 

MQL enhances the machining of difficult-to-cut materials 

(Inconel-800 superalloy). In addition, the application of 

evolutional optimization (NSGA-II) methods combines the 

RBF model to boost the optimal study to generate the solutions 

for machining difficult-to-cut materials. 

2. MATERIAL AND METHODOLOGY

The material worked in this study is Inconel-800 super-alloy 

material which has exceptional properties as mentioned in the 

Introduction section. The cutting tool is a flat-end mill with a 

diameter of 16 mm and two Sandvik Coromant inserts, as 

shown in Figure 1. According to the theory of metal cutting, 

the three most essential factors that impact the product quality 

are cutting velocity, feed per tooth, and depth of cut. Based on 

the recommendation of the cutting parameters on the 

CoroPlus® Tool Guide website, the practical range of cutting 

velocity (vc), depth of cut (ap), and feed per tooth (fz) are 90–

150 m/min, 0.4–1 mm, and 0.03–0.09 mm/tooth, respectively. 

The geometry of the cutting tool (the insert) has three options 

for tool nose radius (0.4, 0.8, and 1.2 mm). To save the 

experiment time and cost, the design of the experiment (DOE) 

with an orthogonal array (Taguchi array) was employed. Each 

factor or input parameter was divided into three levels: lower 

(level 1), middle (level 2), and upper (level 3), with their 

values as shown in Table 1. The number of experiments and 

the combination of values of the cutting parameters were 

generated based on the L27 Taguchi array, as shown in Table 

2. Each row of the experiment was repeated three times, and

the average value of the machine responses was calculated to

obtain reliable results.

Table 1. The input parameters and their levels 

Input parameters 
Unit Level 

1 2 3 

Cutting velocity (vc) m/min 90 120 150 

Feed per tooth (fz) mm/tooth 0.03 0.06 0.09 

Depth of cut (ap) mm 0.4 0.7 1.0 

Corner radius (r) mm 0.4 0.8 1.2 

Figure 1. Cutting tool of Sandvik Coromant were used for 

the entire experiment 

The response parameters we selected are cutting force (Fc), 

specific cutting force (Ks), and material removal rate (MRR). 

Fc was measured with Vishay Precision Group equipment. 

MRR can be determined according to the following formula. 
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where, ae is the width of cut (mm), z is the flute of milling tool, 

and d is diameter of milling tool (mm). 

The formula carried out the computation of specific cutting 

force (Ks) shown in Eq. (2). 
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where, S is the section of chip layer [20]. 

The cooling and lubricating condition using MQL in this 

work is fixed. Al2O3 nanoparticles, which enhance the cutting 

condition, were utilized and dissolved into CT232 cutting oil 

commercialized in Taiwan. The nanoparticle concentration by 

volume mixed was 0.5% and was stirred for a minimum of 12 

hours, as shown in Figure 2, to form a homogeneous mixture 

before experimenting. 

The MQL parameters applied as flow rate, nozzle angle, the 

pressure of air, and nozzle distance stabilize at 90 mL/h, 60 

degrees, 3 kg/cm2, and 25 mm, respectively [6]. The 

experiment setup was arranged as shown in Figure 3. 

Figure 2. Magnetic stirrer utilizes for mixing nanoparticles 

into CT232 cutting oil 

Figure 3. Experimental setup 
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The three-axis milling machine used to conduct the whole 

experiment is named Victor Vertical Machining Center 4. Slot 

milling and axial depth of cut is the type of milling the author 

employs. Figure 4 shows the experiment of milling operation 

running with nanofluid MQL. Figure 5 shows the workpiece 

after milling and testing with cutting parameters, as in Table 1 

above. 

Figure 4. Milling operation running with nanofluid MQL 

The approximate RBF model combines with NSGA-II for 

modeling and optimization of technological parameters during 

machining. RBF approximation is a kind of neural network 

applying a hidden layer of radial units and an output layer of 

linear units. RBF approximations are used by reasonably fast 

training and reasonably compact networks. NSGA-II 

algorithm is one of the most commonly employed multi-

objective optimization algorithms in engineering. This 

algorithm has features such as a high-speed non-dominated 

sorting approach, a crowded distance estimation procedure, 

and an easily crowded comparison operator. 

Figure 5. Finished workpiece Inconel-800 machined with 

nanofluid MQL 

3. RESULTS AND DISCUSSION

The results of 27 experiments are tabulated in Table 2. 

Subsequently, the RBF approximation model was employed to 

capture the relationship between input and output parameters. 

The goodness of fit or fidelity of the RBF model is measured 

by the coefficient of the determinant (R-squared). Figure 6 

shows the coefficient R2 of the RBF model in this work. If the 

observed values lie on the diagonal line, there will be no error 

between the observed values and the predicted value, and the 

R-squared equals 1. The results of this work show that the R-

squared of the RBF model for cutting force (Figure 6(a)) and

specific cutting force (Figure 6(b)) are 0.93 and 0.94,

respectively. The values of R-squared are pretty high and

acceptable for engineering because they are higher than 0.9.

As a result, the fidelity of the approximate model is excellent

and significant.

Table 2. DOE and results of physical experiments 

Input parameters Response parameters 

No 

Cutting velocity 

vc (m/min) 

Depth of cut 

ap (mm) 

feed per tooth 

fz (mm/tooth) 

Radius of the 

cutting tool 

r (mm) 

Cutting 

force 

Fc (N) 

Material 

removal rate 

MRR (mm3/min) 

Specific cutting 

force 

Ks (N/mm2) 

1 90 0.4 0.03 0.4 102.6 688 8550 

2 150 0.4 0.09 0.4 372.6 3440 10350 

3 120 0.4 0.06 0.4 253.4 1834 10558 

4 120 0.7 0.03 0.4 242.0 1605 11524 

5 150 0.7 0.06 0.4 480.0 4013 11429 

6 90 0.7 0.09 0.4 249.0 3612 3952 

7 150 1.0 0.03 0.4 383.5 2866 12783 

8 90 1.0 0.06 0.4 285.2 3440 4753 

9 120 1.0 0.09 0.4 546.4 6879 6071 

10 120 0.4 0.03 0.8 158.1 917 13175 

11 150 0.4 0.06 0.8 318.5 2293 13271 

12 90 0.4 0.09 0.8 229.4 2064 6372 

13 150 0.7 0.03 0.8 368.8 2006 17562 

14 90 0.7 0.06 0.8 289.1 2408 6883 

15 120 0.7 0.09 0.8 491.2 4815 7797 

16 90 1.0 0.03 0.8 244.1 1720 8137 

17 120 1.0 0.06 0.8 542.5 4586 9042 

18 150 1.0 0.09 0.8 853.8 8599 9487 

19 150 0.4 0.03 1.2 210.2 1147 17517 

20 90 0.4 0.06 1.2 165.5 1376 6896 

21 120 0.4 0.09 1.2 277.0 2752 7694 

22 90 0.7 0.03 1.2 205.0 1204 9762 

23 120 0.7 0.06 1.2 393.5 3210 9369 

24 150 0.7 0.09 1.2 593.0 6019 9413 

25 120 1.0 0.03 1.2 389.8 2293 12993 

26 150 1.0 0.06 1.2 692.8 5733 11547 

27 90 1.0 0.09 1.2 433.2 5159 4813 
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In Figure 7, the distribution of effects on cutting force is 

arranged as follows cutting velocity, depth of cut, feed per 

tooth, and radii of the cutting tool. Based on Eq. (2), we can 

also capture that depth of cut and feed per tooth are two factors 

affecting specific cutting forces. This rule can also be caught 

in Figure 8; when the depth of cut and feed per tooth increases, 

the specific cutting force decreases. Ks falls substantially, 

which is suitable for machining since it supports the milling 

cutting tool avoid breaking. 

(a) 

(b) 

Figure 6. Coefficient R2 of RBF model for cutting force (a) 

and specific cutting force (b) 

The relationship between the cutting parameters and the 

machining responses modeled by the radial basis function 

approximation method is graphically shown in Figure 9. It can 

be seen that the increase in the value of cutting parameters 

increases cutting force. However, those relationships are non-

linear. 

When cutting velocity is combined with a high value of 

cutting depth, the cutting force increases sharply (Figure 9(a)). 

On the contrary, if the value of cutting depth is low, the 

increase in cutting force when increasing the cutting velocity 

is lower compared to the previous case. The influence of 

cutting nose radius and cutting feed per tooth is lower than that 

of cutting velocity and depth of cut (Figure 9(b) and Figure 7). 

Figure 7. Global effect of milling parameters to cutting force 

Figure 8. The response surface plot for specific cutting force 

(a) 

(b) 

Figure 9. The response surface plot for cutting force (a, b) 
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When increasing feed per tooth and depth of cut, Ks 

decreases significantly, which is suitable in the machining 

process because it will assist the cutting tool to circumvent 

cracking during machining. However, when we increase the 

feed per tooth, Fc also raises; obviously, the bigger the Fc, the 

worse it is. It is undesirable in machining. So we need to 

optimize to compromise between Fc and Ks. Another goal to 

aim for is to maximize the MRR. So this is a multi-objective 

optimization problem where the outputs conflict with each 

other. We need to make compromises to create an optimal 

value for all three responses. So, the adequacy and significance 

of the RBF approximate model combined with the NSGA-II 

algorithm were employed for multi-objective optimization for 

maximum MRR, minimum cutting force and specific cutting 

force. The Pareto front shows the optimal results that can be 

observed in Figure 10. 

The Pareto plots in Figure 10(a) and 10(b) shows all the 

possible solutions (both black and blue points) based on the 

Non-sorting Genetic Algorithm II when solving the 

optimization problem. All the points in the plot are feasible 

solutions. However, only the lowest points (blue points on the 

graph) measured in the vertical direction (because we solved 

the minimization problem) are the so-called Pareto optimal set. 

The Pareto plot provides the best trade-off solution for 

response parameters. 

Indeed, cutting with a high material removal rate in the 

processing materials is always emphasized. However, high 

material removal rate means large cutting forces, which is not 

good. Therefore, if those two goals conflict, a reasonable 

compromise is needed. However, it is shown in Figure 10(b) 

that not every increase in MRR will increase Ks; here, there is 

a suitable value of Ks (3020.2 N/mm2, minimum value) 

corresponding to that of MRR (5320.5 (mm3/min)). The 

material removal rate, cutting force, and specific cutting force 

can choose a different value depending on the circumstances 

of the engineer or machine operator using the Pareto plot chart. 

Based on this, it can be seen that the relationship between the 

three output variables is quite complicated, so if the operator 

chooses according to experience or the operation guide, it will 

be challenging to find the optimal point for multi-objective 

optimization as the requirements of this study. This 

relationship can also be easily seen when skimming Figure 

10(c), where the relationship of Fc, Ks, and MRR is most 

apparent. The compromises between three response factors are 

also easily selected, supporting engineers and manufacturers 

to optimize the desired response parameters. 

(a) 

(b) 

(c) 

Figure 10. Pareto plot for cutting force, specific cutting force 

and MRR based on RBF model combined with NSGA-II (a, 

b, c) 

4. CONCLUSION

The study approaches the employ of nanofluid MQL to 

support the machining of newly difficult-to-machine 

materials, which is Inconel-800 superalloy material. The paper 

also modeled and optimized the machining parameters in 

terms of cutting force, specific cutting force, and material 

removal rate. The application of Al203 nanoparticle assists in 

increasing the tribology of cutting oil which enhances the 

cutting efficiency. Following remarks can be drawn: 

i. The RBF is an appropriate metamodel that can accurately

capture the approximate relationship between machining

parameters and machining responses because of the high

value of the R2 coefficient in this work.

ii. The work describes the relationship between input

parameters and each output response in detail, clearly, and

statistically.

iii. Combining the RBF approximate model with the NGSA-

II contributes to a proper solution for adversarial multi-

objective optimization.

iv. Pareto plot presented in this study makes it easier and

more systematic to select cutting parameters (output and

input parameters).

v. The relationship between Fc, Ks, and MRR is built with

effortless observation and high confidence.
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