
Beat-by-Beat ECG Monitoring from Photoplythmography Based on Scattering Wavelet 

Transform 

Osama A. Omer1, Mostafa Salah2, Ammar M. Hassan3, Ahmed S. Mubarak1*

1 Faculty of Engineering, Aswan University, Abulrish, Aswan 81542, Egypt  
2 Faculty of Engineering, Sohag University, Sohag 82524, Egypt 
3 Arab Academy for Science, Technology and Maritime Transport, South Valley Branch, Aswan 81516, Egypt 

Corresponding Author Email: ahmed.soliman@aswu.edu.eg

https://doi.org/10.18280/ts.390504 ABSTRACT 

Received: 6 September 2022 

Accepted: 10 October 2022 

The electrocardiogram (ECG) is a popular measurement scheme to assess and diagnose 

cardiovascular diseases. ECG devices use gel material and electrodes that may cause skin 

irritation and discomfort during long use, which restricts the long-term use of these devices. 

On the other hand, Photoplethysmography (PPG) is an optical approach used to estimate the 

skin blood flow using photons. Recently, the relationship between the PPG and ECG has 

been recognized and there are early stage attempts to reconstruct the ECG signals from PPG 

signals that can lead to giving up electrodes and skin irritating and uncomfortable materials. 

However, these recent researches suffer from the sensitivity to the PPG signal quality, 

shifting, and scaling. Therefore, it is restricted with constrained PPG signals. In this paper, 

we propose an ECG reconstruction system that is independent of PPG scaling and shifting. 

The proposed system is based on scattering wavelet transform (SWT) as a feature domain 

along with the deep learning network. Using SWT helps deep learning networks to learn the 

non-linear relationship between ECG and PPG even with small datasets. Also, the proposed 

system is based on beat-by-beat ECG estimation rather than signal-based which leads to the 

learning of local features rather than global features. Based on the presented simulation 

results, the proposed system with beat-by-beat SWT features extraction outperforms the 

other feature domains; Time, DCT, and DWT domains.  
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1. INTRODUCTION

Cardiovascular diseases are the leading cause of global 

death in the world. According to the World Health 

Organization, the world’s biggest killer is ischemic heart 

disease, responsible for 16% of the world’s total deaths [1]. 

Electrocardiogram (abbreviated as EKG or ECG) is a 

recording of the electrical activity of the heart. Since it has 

been invented in 1902, ECG has become the most used 

cardiovascular diagnostic procedure and is a fundamental tool 

of clinical practice [2]. People are asked to monitor their ECG 

signals for many reasons, such as to check their general health, 

diagnose a medical condition, and monitor a medical condition 

before surgeries. Currently, ECG monitoring is performed by 

clinical laboratories using special devices with special 

preparation (in case of effort or effortless ECG monitoring). In 

this monitoring, the patients relate to several electrodes with 

some special Gel. Patients may feel discomfort and/or pain 

itching or skin irritation at the electrode’s positions. It is 

considered one of the most important attributes of continuous 

health monitoring required for identifying those who are at 

serious risk of future cardiovascular events or death. Many 

modern wearable ECG systems have been developed in recent 

decades [3]. They are simpler and more reliable than before, 

weighing only a fraction of a pound. Unfortunately, it suffers 

from some limitations as the material used to provide good 

signal quality with the electrode may cause skin irritation and 

discomfort during long use, which restricts the long-term use 

of the devices. On the other hand, PPG is a noninvasive 

circulatory signal related to the pulsatile volume of blood in 

tissues [4]. PPG is easy to set up compared with ECG, more 

convenient, more economical, and nearly ubiquitous in clinics 

and hospitals in the form of finger/toe clips and oximeters and 

has increasing popularity in the form of consumer-grade 

wearable devices that offer continuous and long-term 

monitoring capability and do not cause skin irritations.  

There is a vast amount of research is being conducted with 

the goal of developing wearable devices capable of continuous 

ECG monitoring and feasible for daily life use by continuously 

measuring PPG signal and reconstructing ECG signal from it 

as Photoplethysmogram (PPG) is considered a close 

alternative to ECG, which contains valuable cardiovascular 

information. For instance, studies have shown that several 

features extracted from PPG [5] are highly correlated with 

corresponding metrics extracted from ECG [6]. Yet, through 

recent advancements in smart watches, smartphones, and other 

similar wearable and mobile devices, PPG has become the 

industry standard as a simple, wearable-friendly, and low-cost 

solution for continuous heart rate (HR) monitoring for 

everyday use. However, PPG suffers from inaccurate HR 

estimation and several other limitations in comparison to 

conventional ECG monitoring devices [4-8] due to factors like 

skin tone, diverse skin types, motion artefacts, and signal 

crossovers among others. Moreover, the ECG waveform 

carries important information about the cardiac activity. As a 

result, ECG is consistently being used by cardiologists for 
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assessing the condition and performance of the heart. Based 

on all the previous studies, there is a gap between the need for 

continuous wearable ECG monitoring and the available 

solutions in the market. 

The rest of the paper is organized as follows: Section 2 

discusses the related works, Section 3 presents the proposed 

SWT-based ECG monitoring system, Section 4 introduces the 

experimental results, and finally the paper is concluded in 

Section 5. 
 

 

2. RELATED WORKS 
 

By taking the benefit of the correlation between the two 

signals there are inspirations to not only the ECG parameters 

but also reconstruct the ECG waveform from the PPG 

measurement. ECG generation is proposed in much research 

in the literatures [9-13]. However, some of them are not related 

to the proposed work where ECG is artificially generated for 

other purposes. In literature [9], synthesizing ECG with 

generative adversarial networks (GANs) is studied using 

bidirectional Long Short-Term Memory-Convolutional 

Neural Network (LSTM-CNN) architecture to generate ECG 

from Gaussian noise. In literature [10], personalized GAN 

(PGAN) is proposed to generate patient-specific fake synthetic 

ECG waveforms from input noise. In literature [11], the 

synthesis of ECG waveforms is proposed to improve emotion 

classification accuracy where synthetic ECG was used to 

augment the available ECG data. Another study is performed 

by generating ECG from input noise to augment the available 

ECG training set to improve the performance for arrhythmia 

detection [12]. With respect to the specific problem of PPG-

to-ECG transformation, to the best of our knowledge, there are 

two research tried to solve this problem [13, 14]. Synthesizing 

ECG with GANs was first studied in literature [13], where 

bidirectional LSTM-CNN architecture was proposed to 

generate ECG from Gaussian noise. This work used linear 

regression with the discrete cosine transformation (DCT) 

technique to map each PPG cycle to its corresponding ECG 

cycle. First, onsets of the PPG signals were aligned to the R-

peaks of the ECG signals, followed by a de-trending operation 

to reduce noise. Next, each cycle of ECG and PPG was 

segmented, followed by temporal scaling using linear 

interpolation to maintain a fixed segment length. Finally, a 

linear regression model was trained to learn the relation 

between the DCT coefficients of PPG segments and 

corresponding ECG segments. In spite of several contributions, 

this study suffers from a few limitations: First, the model failed 

to produce reliable ECG in a subject independent manner, 

which limits its application to only previously seen subject’s 

data. Second, often the relation between PPG segments and 

ECG segments is not linear, therefore in several cases, this 

model failed to capture the non-linear relationships between 

these two domains. Third, no experiments have been 

performed to indicate any performance enhancement gained 

from using the generated ECG as opposed to the available PPG 

(for example a comparison of measured HR). CardioGAN [14] 

is a solution for generating ECG signals from input PPG 

signals to aid with continuous and reliable cardiac monitoring. 

This method takes 4-second PPG segments and generates 

corresponding ECG segments of equal length. Self-gated soft-

attention is used in the generator to learn important regions, 

for example the QRS complexes (ventricular depolarization) 

of ECG waveforms. Moreover, a dual discriminator strategy is 

used to learn the mapping in both time and frequency domains. 

Further, they evaluate the merits of the generated ECG by 

calculating HR and comparing the results to HR obtained from 

the real PPG. The analysis shows a clear advantage of using 

CardioGAN as more accurate HR values are obtained as a 

result of using the model. The works done in the ECG 

estimation from PPG [13, 14] suffer from the sensitivity to the 

shifting and/or scaling of the test PPG signal. On the other 

hand, the scattering wavelet transform is shown as an effective 

tool for feature extraction for classification [15]. Scattering 

wavelet is shown to be insensitive to the signal scaling and 

shifting. Therefore, it is a powerful feature domain. Motivated 

by the discussion and regarding the previous works for ECG 

estimation, our main contributions in this paper are: 

● Unlike the previous work [14], we propose to estimate 

ECG on a beat-by-beat basis rather than a signal basis. 

● Unlike the work done in the study of Zhu et al. [13], we 

used the scattering wavelet domain rather than the time 

domain to make the system more robust against scaling and 

shifting. 

SWT is used as a feature domain to extract features that are 

insensitive to scaling and shifting rather than using time 

domain (TD) [14], DCT [13] domain, or discrete wavelet 

transform (DWT) domain that are sensitive to scaling and 

shifting. 

 

 

3. THE PROPOSED SWT-BASED ECG MONITORING 

SYSTEM 

 

The proposed system depends on photoplethysmography 

signals and uses deep learning models to determine the ECG 

signals on a beat-by-beat basis. Specifically, the proposed 

system consists of two phases: namely, the learning phase and 

the testing/prediction phase. A block diagram for the whole 

proposed system is shown in Figure 1. The learning phase 

consists of signal-based data cleaning, signal segmentation, 

per-beat data cleaning, beat normalization and beat-by-beat 

DL training. On the other hand, the prediction phase consists 

of signal segmentation, beats normalization and scaling and 

ECG prediction. These stages are described in detail in the 

following sections. 

 

 
 

Figure 1. The block diagram for the whole system 
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3.1 Learning phase 

 

The input to this phase is the MIMIC II dataset that contains 

contact PPG and the corresponding ECG. In this phase, the 

database passes through the following steps: 

 

3.1.1 PPG cleaning based on signal power 

In this stage, both PPG and ECG signals are inspected 

without any segmentation. The main idea resides in viewing 

both signals in the frequency domain where both signals have 

to exhibit similar spectral construction as follows. Both PPG 

and ECG signals are arising from the same pulsating source 

which is the heart. So, PPG and ECG signals can be considered 

quasi-periodic signals with identical fundamental frequencies. 

Hence, the estimated heart rate (HR) from the PPG signal has 

to coincide with that estimated from the ECG signal. Also, 

physiological limits impose upper and lower bounds on the HR 

ranges. Often, the estimated fundamental frequency F0 

determines the estimated heart rate. Hence, the constraints on 

HR imply corresponding constraints on the spectral shape. 

Moreover, thanks to the semi-periodicity of PPG/ECG signals, 

most of the signal power has to be concentrated around the 

fundamental frequency and its harmonics with a very narrow 

bandwidth of 0.2 Hz [16]. The ratio of the power of the in-

band signal to the power of the out-band signal is calculated 

by Eq. (1). 

 

𝑄SNR =
∫  
𝑓0+Δ𝑓

𝑓0−Δ𝑓
𝑃̂𝑓df + ∫  

2𝑓0+Δ𝑓

2𝑓0−Δ𝑓
𝑃̂𝑓df + ∫  

3𝑓0+Δ𝑓

3𝑓0−Δ𝑓
𝑃̂𝑓df

∫  
Ω
𝑃̂𝑓df − (∫  

𝑓0+Δ𝑓

𝑓0−Δ𝑓
𝑃̂𝑓df + ∫  

2𝑓0+2Δ𝑓

2𝑓0−2Δ𝑓
𝑃̂𝑓df + ∫  

3𝑓0+Δ𝑓

3𝑓0−Δ𝑓
𝑃̂𝑓df)

 (1) 

 

where 𝑃̂𝑓 represents spectral power density measured over the 

cardiac band (Ω), Ω=[0.5−8]Hz, 𝑓0  is the fundamental 

frequency and ∆f is the in-band around the fundamental 

frequency.  

 

3.1.2 Beat segmentation 

In the beginning, the cleaned dataset is passed through two 

stages filtering process. In the first filter, the signals are passed 

through a band-pass filter in the cardiac frequencies [0.8 Hz - 

5 Hz]. Then the filtered signal is segmented into beats to deal 

with each beat individually. The signals are segmented based 

on the detection of local minimum locations. Figure 2 shows 

the local minimum locations for the filtered signal. Therefore, 

the time interval between each two consecutive minimums is 

defined as the beat interval (BI). The beat interval is an 

important feature of the beats. Therefore, BI will be used with 

PPG values in the case of the time domain. 

 

 
 

Figure 2. The detected local minimum locations of the 

filtered signal 

3.1.3 Per-beat data cleaning 

After beat segmentation, some of these beats are distorted 

beats. Beats are cleaned (valid beats are selected) to be used in 

the training process based on some metrics related to the 

general distinct shape of PPG patterns. These metrics are beat 

intervals, skewness value and correlation with the fundamental 

PCA component. Figure 3 provides an example of segmented 

beats. This figure contains different beats that are valid and 

invalid. Some invalid beats are due to the existence of multi 

systolic beats (as shown in beats in blue and yellow). Beats in 

solid black and dashed black have a single systolic peak and a 

single notch therefore they are valid beats. The skewed beat in 

green is invalid as well. The three following criteria [16] are 

used to select valid beats and reject the others:  

1. Beat interval (BI): the standard range of the heart rate is 

[40 bpm-180 bpm] which corresponds beat interval in the 

range [0.33-1.5] second. Therefore, we use only beats with 

beat intervals in the range 0.33≤BI≤1.5.  

2. Beat Skewness quality index (SQI): the Skewness 

measures the asymmetry of the PPG beats compared to the 

standard beat. The normal beats have positively skewed shapes. 

 

 
 

Figure 3. Segmented beats 

 

It is also can be called the right-skewed beat. A tail is 

referred to as the tapering of the curve differently from the data 

points on the other side if the given beat is shifted to the right 

and with its tail on the left side, it is a negatively skewed beat. 

It is also called a left-skewed distribution. The skewness value 

of any distribution showing a negative skew is always less than 

zero. SQI can be calculated by Eq. (2). 

 

𝑆𝑄𝐼 =
∑

(𝑌𝑖 − 𝑌~)3

𝑁
⁄𝑁

𝑖=1

𝜎3
 

(2) 

 

where, 𝑌𝑖 is the i-th beat’s ponit, Y~ is the mean of the beat, σ 

is the standard deviation, and N is the number of beat’s points. 

In this work, we restrict our beats with only positive SQI. 

Moreover, the high positivity of SQI leads to long tailed beat 

which is nota normal beat. In our work, we use valid beats with 

0≤SQI≤1. 

3. Beat correlation quality index (CQI): the correlation 

with a standard beat can help restrict beats to be within a valid 

range. However, the correlation should be not strict that is CQI 

should be more than 0.3 to insure rejecting highly deviated 

beats.  

 

3.1.4 Beat normalization and resizing 

The segmented PPG beats are normalized to be in the range 

[0-1] by using Eq. (3). 
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𝑆𝑛 =
𝑆 −𝑚𝑖𝑛⁡(𝑆)

𝑚𝑎𝑥(𝑆) − 𝑚𝑖𝑛⁡(𝑆)
 (3) 

 

where Sn is the normalized signal and S is the un-normalized 

signal. The normalized beats are then normalized in time so as 

to be with a fixed length (120). The time interval is used as a 

feature besides the normalized beats in case of the time domain. 

 

3.1.5 Deep learning model training 

Using LSTM sequence-to-sequence regression, the ECG 

beats are estimated from the corresponding PPG features. Four 

feature domains are tested including the time domain, DCT 

domain, DWT domain and SWT domain. In the time domain, 

the beat interval information is included with the input 

sequence. Each feature domain has its advantages as follows: 

the time domain includes the beat interval and the behavior of 

the PPG which is related to the behavior of the ECG in the 

time domain. However, the time domain features require a 

huge dataset and complex network to extract the deep features 

directly from the PPG beats in the time domain. On the other 

hand, the DCT feature domain compresses the beats features 

in a small number of points which can help in reducing the 

input size with less deformation. However, in this study, we 

used the full length DCT features for a fair comparison. The 

main drawback of this feature domain is that error prediction 

of the DC and low frequency components may lead to 

destructive results in the ECG prediction. The DWT domain 

has combinational features that are time and frequency which 

make it suitable for ECG estimation. However, it suffers from 

the sensitivity to the signal shifting and scaling that is usually 

happen with the PPG sensors. Therefore, it may lead to errors 

due to scaling and shifting. Unlike DWT, SWT doesn’t suffer 

from the effect of the shifting and scaling of the PPG beats. So, 

SWT is suitable to be used as a feature extraction to help the 

LSTM network learn the relationship between PPG and ECG. 

 

3.2 Prediction phase 

 

Table 1. Network specifications 

 
Number of Signals 158094 

Signal Length 120 

Number of Channels 4×1 Layer array 

Layer specifications 

1. Sequence input with 120 

dimensions 

2. LSTM with 50 hidden units 

3. Two fully connected layer 

4. Regression Output mean-

squared-error 

Learning Rate 0.005 

Number of Iterations per 

Epoch 
191 

Optimization function L2-Norm 

Optimization method ADAM 

 

Table 2. Input and output data size in the two used scenarios 

for different domains 

 
Domain Time DCT DWT SWT 

Input size 121 × 1 120 × 1 120 × 1 120 × 1 

Output size 120 × 1 120 × 1 120 × 1 120 ×1 

 

The input to this phase is the PPG signal. In this phase, the 

PPG signal passes through the following steps: signal 

segmentation and beat normalization and beat-by-beat ECG 

prediction. The network specifications are tabulated in Table 

1. Also, the size of the input and output data from the LSTM 

network is tabulated in Table 2 for different cases. The outputs 

of all the cases have the same size as they are the ECG signal. 

However, in case of time, the input size is different compared 

to that of the other cases this is because in the case of the time 

domain the beat interval is included (120 + 1). However, in the 

cases of the frequency domain, only the frequency domain 

coefficients are used as input to the network (120). 

 

 

4. EXPERIMENTAL RESULTS 

 

4.1 Dataset 

 

Physionet's MIMIC II data collection (Multi-parameter 

Intelligent Monitoring in Intensive Care) [17] gives the 

combined PPG-ECG data required to feed the learning models. 

The datasets collection are introduced in a compiled version 

with a better display in the study [18]. However, an 

examination of that data set reveals that it still contains a 

significant number of faulty PPG and ECG signals. That data 

set will be used to create a jointly cleaned PPG-ECG dataset 

to feed deep learning-based BP estimate algorithms. This data 

collection includes 12,000 records of various lengths. ABP 

(invasive arterial blood pressure in millimeters of mercury), 

PPG (photoplethysmograph from fingertip), and ECG 

(electrocardiogram from channel II) signals are captured at 

Fs=125 samples per second in each record. However, we're 

just interested in the PPG signal and the ECG label that goes 

with it. Records are divided into pieces of 1024 samples in 

length for effective processing and filtering. We've 

accumulated 30,660 in records. Only PPG signals can be pre-

processed using any boosting approach (such as band-pass 

filtering in the [0.8-5] Hz frequency range) as long as their 

morphological form is not changed. The ECG signal, on the 

other hand, cannot be tampered with since any attempt to 

improve its quality alters its magnitude, which indicates the 

ECG parameters. PPG beats will also be adjusted during the 

beat segmentation step, but comparable ECG beats will be left 

alone. Without any filtering capability, heavily distorted ECG 

signals or beats must be discarded.  

 

4.2 Results and discussion 

 

 
 

Figure 4. Estimated ECG beats from PPG beats using 

different transformations 

 

In this section, the ECG beats are estimated from the 

corresponding PPG beats by using the LSTM network with a 

120×1 sequence regressor output layer. As the output 
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represents a sequence and as we are interest in the time series 

ECG, there are Six possible training combinations for ECG 

estimation with different feature domains. These combinations 

are: 1) using time domain (TD) for PPG beats with BI and TD 

for the ECG beats, 2) using DCT for PPG beats and TD for 

ECG, 3) using DCT for PPG beats and DCT for ECG and then 

using IDCT for comparison and evaluation, 4) using DWT for 

PPG beats and TD for ECG, 5) using DWT for PPG beats and 

DWT for ECG and then using IDWT for comparison and 

evaluation, and 6) using SWT for PPG beats and TD for ECG.  

Table 3 shows the RMSE and MAE for the estimated ECG 

beats with different cases and different feature domains. As 

expected, using SWT outperforms the other feature domains. 

Figure 4 shows the plot of the reconstructed ECG beats with 

different feature domains and different cases. As shown from 

this figure, the estimated ECG beat by using SWT-TD is 

highly related and correlated to the ground truth ECG beat. 

Figure 5 shows the convergence for the loss function and the 

RMS error for the training and validation stages. This figure 

shows that the SWT-TD case converges after 20 epochs. 

 

 
(a) 

 
(b) 

 

Figure 5. (a) The RMSE convergence for the training and validation steps in case of the SWT domain, (b) The Loss function 

convergence for the training and validation steps in case of the SWT domain 

 

Table 3. Comparison between different transformations 

 

ECG Beats 
Time DCT DWT SWT 

TD+BI-TD DCT-TD DCT-DCT DWT-TD DWT-DWT SWT-TD 

RMSE 0.1101 0.1104 0.1050 0.1033 0.1013 0.1006 

MAE 0.0928 0.0932 0.0872 0.0858 0.0836 0.0828 

 

 

5. CONCLUSION  

 

In this paper, we presented a beat-by-beat ECG signal 

estimation system. The ECG beats are estimated from PPG 

beats. The proposed system is based on deep learning with 

scattering wavelet as a feature domain. The main advantage of 

using SWT is that it is independent of shifting and scaling. 

Therefore, it can detect the ECG signal regardless of the 

shifting or scaling of the PPG signal. Different feature 

domains are compared to show the effectiveness of the 

scattering wavelet to estimate the ECG beats. Unlike the work 

done in the literature, we proposed ECG estimation in a beat 

basis rather than in a signal basis. Based on the presented 

simulation results, using beat-by-beat SWT outperforms other 

schemes that are beat-by-beat time domain, beat-by-beat DCT 

domain, and beat-by-beat DWT domain. The limitation of the 

proposed method is that inaccurate signal segmentation may 

lead to invalid beats. This in turn leads to beats rejection and 

therefore incomplete ECG signal. In future work, an extension 

for the segment -by-segment ECG reconstruction rather than 

beat-by-beat can overcome the limitation of inaccurate signal 

segmentation. 
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NOMENCLATURE 

 

ABP Arterial blood pressure 

BI Beat interval 

CNN Convolutional neural network 

CQI Beat correlation quality index 

DCT Discrete cosine transform 

DL Deep learning  

DWT Discrete wavelet transform  

ECG Electrocardiogram  

GAN Generative adversarial network 

HR Heart rate  

LSTM Long short-term memory 

PGAN Personalized GAN  

PPG Photoplethysmography 

SQI Beat skewness quality index 

SWT Scattering wavelet transform  

TD Time domain 

 

Greek symbols 

 

ꭥ Cardiac frequency band, Hz 

σ Standard deviation  

∆f The in-band around the fundamental frequency.  

 

Subscripts 

 

𝑓0 The fundamental frequency  

N Number of beat’s points 

𝑃̂𝑓 spectral power density 

𝑄SNR The ratio of the power of the in-band signal to the 

power of the out-band signal 

S Un-normalized PPG signal 

𝑆𝑛 Normalized PPG signal 

Y~ The mean of the beat’s points 

Yi i-th beat’s point 
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