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Reconstruction of target images from phase-only hologram (POH) has the advantages of 

high diffraction efficiency and no conjugate terms. The Gerchberg-Saxton (GS) algorithm 

is a classical algorithm applied to recover the phase, but it most likely stagnantes after a few 

iterations. This paper proposes a hybrid iterative algorithm of Amplitude Weighting and 

Phase Gradient Descent (AW-PGD) to generate a higher-quality POH. Firstly, the quadratic 

phase is used as the initial phase, zero-pads the periphery of the target image, and then 

multiplies the two to form the complex amplitude as the iterative initial value. During 

iteration, the amplitude of the reconstructed image is constrained by an adaptive dynamic 

exponential term in the signal region to improve the reconstruction accuracy, the constraint 

in the non-signal region is relaxed to reduce the computational effort at the same time; and 

the phase gradient descent technology is used to increase the iteration step and speed up the 

convergence. Finally, the target image amplitude is reconstructed based on the generated 

POH. The numerical simulation results show that the algorithm does not have a significant 

increase in time cost with better reconstruction quality than the GS, Weighted GS (WGS) 

and Adaptive Weighted GS (AWGS) algorithm.  
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1. INTRODUCTION

Since the birth of holography more than 60 years ago [1], it 

has evolved from traditional laser holography to today's 

Computer-Generated Holograms (CGHs) [2, 3]. CGHs don’t 

require special holographic recording materials, but instead 

use Spatial Light Modulators (SLMs) to load CGHs. SLMs are 

highly flexible and are widely used in beam shaping [4], 

holographic displays [5] and atom trapping [6]. Since the 

current mainstream commercial SLMs can only modulate 

either the amplitude or the phase of the light wave, but not both 

directly, only phase-only or amplitude-only hologram can be 

loaded on the SLM [7]. Phase-Only Hologram (POH) has a 

higher diffraction efficiency than Amplitude-Only Hologram 

(AOH) and doesn’t produce conjugate images [8], making 

POH an effective method for reconstructing high quality 

holograms. 

The POH is a non-convex problem derived from complex 

amplitude images and there is no unique exact solution. Only 

an optimal solution under certain conditions can be obtained, 

and the quality of the POH will constrain the quality of the 

reconstructed image [9, 10]. Currently, there are two typies 

algorithms for generate POH, one is the iterative algorithms 

and the other is non-iterative algorithms. Non-iterative 

algorithms include phase mask-like methods [11-14], where 

the target image is multiplied with a phase mask on the image 

plane and then the phase of the complex amplitude on 

hologram plane is taken to reconstruct the target image, where 

the quadratic mask method mentioned in the references [15, 

16] can obtain a higher signal-to-noise ratio. Other non-

iterative algorithms, such as the Sampled Phase-Only

Hologram algorithm [17] and the Complementary Phase-Only 

Hologram algorithm [18] are available for ensuring 

reconstruction quality still, they are computationally intensive 

and require a high-performance SLM. These non-iterative 

algorithms can obtain the desired POH in one step, but the 

quality of the reconstructed image is not as high. 

Iterative algorithms propagate light wave over the hologram 

plane and the image plane by the Fourier Transform (FT) and 

Inversion Fourier Transform (IFT), optimizing the calculation 

results based on the measurable amplitude distribution in the 

two planes and the constraints imposed on the two planes to 

obtain the phase information of the light field in the hologram 

plane. The Gerchberg-Saxton (GS) [19] algorithm, proposed 

in 1972, is a classical iterative algorithm in the field of phase 

extraction and can achieve high-quality reconstructed images. 

But it suffers from the problem of falling into optimal local 

solution and slow convergence, i.e., increasing the number of 

iterations won’t lead to better reconstruction quality. In 

addition, using a random phase as the initial phase causes 

unexpected interference between adjacent sampling points in 

the reconstructed image based on POH, resulting in uneven 

line and edge levels and speckle noise in the reconstructed 

image. Thus, iterative algorithms need to be optimized in 

suppressing speckle noise and improving reconstruction 

quality. In terms of suppressing speckle noise, improvements 

can be made in the initial phase setting, with non-random 

phases such as the quadratic phase and the conical phase used 

as the initial value of the phase iteration in some studies [20, 

21]. To avoid the speckle noise caused by the random initial 

phase, in 2021 Chen et al. proposed an initial phase with 

bandwidth constraint, which ensures the bandwidth constraint 
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of the reproduced optical field and distributes the whole signal 

energy as evenly as possible to the hologram region [22]. Pang 

et al. proposed to use the quadratic phase as the initial phase, 

and was able to determine the relevant parameters of the 

quadratic phase according to the imaging and geometric 

relationships of the lens, thus significantly improving the 

scattering noise, but there are optical artifacts in the 

reconstructed image [23]. In the same year, Wu Y. proposed 

an approximate phase, using a set of plane waves with discrete 

orientations to represent the approximate quadratic phase, 

which can effectively suppress the appearance of speckle noise 

and artefacts [24]. In terms of improving the reconstruction 

quality and convergence speed, constraints need to be 

continuously optimised. For example, Fienup proposed to 

improve the convergence speed by introducing a difference 

between the target image and the computed image in 1982, but 

the noise suppression parameters need to be manually 

controlled [25]. To better tackle this problem, the Weighting 

GS (WGS) algorithm for kinoform implemented with POH 

was proposed by Alexander Kuzmenko in 2011, where the 

computed amplitude is multiplied by the weighting 

coefficients in each iteration to improve convergence [26]. But 

this method suffers from feedback instability. To solve this 

problem, reference [24] proposed the Adaptive Weighted GS 

(AWGS) algorithm with a flexible setting of amplitude 

constraints, which optimizes the weighting coefficients from 

the structure of proportional terms to the exponential terms to 

avoid feedback instability. In contrast to the previous 

approaches which is imposing amplitude constraints on the 

whole target image, some scholars have adopted the approach 

of dividing the target image into signal and non-signal regions, 

where different amplitude constraint strategies are adopted in 

the different regions in order to improve the reconstruction 

quality [27-28]. In addition to the above amplitude constraint-

based algorithms, scholars have also proposed methods to 

constrain the phase as well. For example, in 2017, Wang 

combined gradient descent and weighting techniques with GS 

algorithm and applied them to Diffractive Optical Element 

(DOE) and CGH to demonstrate the effectiveness of this 

method [29]. Another example is Double-Constraint GS 

(DBGS) algorithm, which suppresses speckle noise [30]. This 

algorithm constrains the amplitude and phase in the signal 

region only. However, these algorithms still suffer from 

insufficient reconstruction accuracy. Therefore, the methods 

need to be optimized for higher reconstruction quality without 

increasing the complexity of the optical path system. 

This paper proposes a hybrid constrained iterative algorithm 

for generating POH. In this algorithm, zero-pads the periphery 

of the target image, which is thus divided into signal and non-

signal regions, and multiplied with the quadratic phase to form 

the initial complex amplitude. An exponential amplitude 

constraint is applied on the reconstructed image to improve the 

reconstruction accuracy, and a gradient descent technology is 

used on the phase of hologram to accelerate the convergence 

speed. Numerical experimental results show that the algorithm 

proposed in this paper can effectively accelerate the 

convergence and improve the quality of the reconstructed 

images. 
 

 

2. KNOWLEDGE CONTEXT 
 

This paper presents an optimization algorithm based on the 

GS algorithm, whose calculated POH can be loaded into the 

SLM in the Fourier hologram projection system to realize 

hologram projection. Here is an introduction to the principle 

of Fourier hologram projection and the GS algorithm. 

 

2.1 Principle of Fourier hologram projection 

 

The principle of Fourier hologram projection is shown in 

Figure 1. The hologram plane is placed on the front focal plane 

of the Fourier lens, and the image plane is on the back focal 

plane. The SLM of the hologram plane is loaded the POH 

firstly,which is carrying all the information of the target image. 

The plane light is incident vertically onto the hologram plane 

and modulated by the SLM. The light then passes through the 

Fourier lens for FT. The intensity distribution of the target 

image is displayed on the image plane of the back focal plane 

of the lens. 
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Figure 1. Schematic for Fourier hologram projection system 

 

2.2 Principle of generating POH based on GS method 

 

The GS algorithm is a classical iterative phase retrieval 

algorithm. Figure 2 presents its fundamental principle. The 

steps are as follows: 1) Assume 𝜇0 as the initial phase value 

and form the initial complex amplitude 𝑢0 = 1 ⋅ 𝑒𝑥𝑝(𝑗𝜇0) 
into the iteration; 2) Propagate it through FT to the image plane 

to obtain 𝑈1; 3) Replace its amplitude with the target image 

amplitude |𝐴𝑡 𝑎𝑟𝑔 𝑒𝑡|  to obtain 𝑈1
′ ; 4) Propagate 𝑈1

′  to the 

hologram plane through IFT to obtain 𝑢1
′ ; 5) Replace the 

amplitude of 𝑢1
′ by 1 as the initial value for the next iteration. 

Repeat steps 2-5 until the quality of the reconstructed image 

meets the requirements, where uk is the complex amplitude of 

the hologram after k iterations, its phase is POH, and the 

amplitude of Uk is the reconstructed image amplitude. 

Although the GS algorithm can generate higher quality 

POH, it still suffers from slow convergence, falling into local 

minima, insufficient reconstruction accuracy and feedback 

instability. Many scholars have studied many improved 

algorithms based on the GS algorithm, such as the WGS 

algorithm and the AWGS method. Figure 3 shows a 

comparison of the Root Mean Squared Error (RMSE) curves 

of the GS, WGS and AWGS algorithm, in which the horizontal 

coordinate is the number of iterations and the vertical 

coordinate is the value of RMSE. It can be seen that the WGS 

algorithm suffers from instability, and AWGS algorithm 

converges faster and has better reconstruction quality than GS 

algorithm. 

The three methods are all based on amplitude constraints. 

There is still room to improve the reconstruction quality. If the 

generated phase is also constrained on the hologram plane, it 

will lead to better reconstruction quality. In this paper, we 

combine amplitude weighting strategy and gradient descent 

technology to propose an Amplitude Weighting and Phase 

Gradient Descent (AW-PGD) hybrid algorithm. 
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Figure 2. Principle of generating POH based on GS algorithm 

 

 
 

Figure 3. Comparison of RMSE of GS, WGS and AWGS 

algorithm 

 

 

3. HYBRID METHOD OF AW-PGD 
 

The proposed AW-PGD hybrid algorithm consists of two 

parts. In the first part, zero-padding is applied around the target 

image to improve the reconstruction quality. The black frame 

formed by zero-padding is called the non-signal region, and 

the target image region inside the black frame is called the 

signal region. The image after zero-padding is called the target 

image, as shown in Figure 4. The purpose of zero-padding is 

to move the background noise from the signal region to the 

non-signal region for a high Signal-to-Noise Ratio (SNR) in 

the reconstructed image [31]. 

The second part is the hybrid constraint iteration. The 

hybrid constraint reflects two aspects. One is the feedback 

constraint of the exponential term is applied on the magnitude 

of the reconstructed image on the image plane to improve the 

reconstruction accuracy. The other is the phase of hologram is 

constrainted by gradient descent technology to increase the 

iteration step to speed up the convergence. Figure 5 presents 

the block diagram of the algorithm. 
 

 
 

Figure 4. The image is divided into signal region and non-

signal region by zero-padding 

 
 

Figure 5. Scheme of amplitude weighting and phase 

gradient descent (AW-PGD) hybrid algorithm 

 

𝐴0  is the initial complex amplitude of the image plane, 

which can be expressed as follows: 

 

( )0 arg expt etA A j=   (1) 

 

where, |𝐴𝑡 𝑎𝑟𝑔 𝑒𝑡| is the intensity of the target image containing 

the zero-padding region. Since multiplying the target image 

with a quadratic phase mask has the effect of removing some 

of the speckle noise, ϕ takes the quadratic phase, the 

expression of which is given as Eq. (2): 

 
2 2am bn = +  (2) 

 

here, m  and n are the coordinates of the signal region; a  and

b are the parameters between 0  and 1. According to reference 

[32], a  and b can take the values: 

 

a
M


  (3) 

 

b
N


  (4) 

 

M and N are the numbers of horizontal and vertical pixel 

points in the signal region respectively. 

a0 is the complex amplitude of A0 propagated to the 

hologram plane after IFT. Only the phase of a0 is taken to 

obtain a1, starts the iterative process. k denotes the number of 

iterations, and k starts from k=1. The iterative process is as 

follows: 

Step 1: ak represents the complex amplitude of hologram of 

k-th iteration, which phase distribution is 𝜑𝑘. ak is propagated 

through FT to the image plane to obtain the complex amplitude 

Ak. 

Step 2: Replace the amplitude of Ak with |𝐴𝑜𝑏| to become 

𝐴𝑘
′ . 

Step 3: 𝐴𝑘
′  is propagated back to the hologram plane via IFT 

to obtain the complex amplitude 𝑎𝑘
′ , 𝜓𝑘 is the phase 
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distribution of 𝑎𝑘
′ , and 𝜓𝑘  becomes 𝜑𝑘+1  after a gradient 

descent to the next iteration. 

The amplitude of 𝐴𝑘  is the reconstructed image and the 

phase of 𝑎𝑘 is the desired POH. Repeat the above steps until 

the quality of the reconstructed image or the number of 

iterations meets the requirements.  

In the above iterative process, the amplitude constraint of 

kA on the image plane is 

 

arg

arg ,

,

t et kA A

t et

ob

k

A e signal region
A

A non signal region

− 
= 

−

 (5) 

 

This gives the complex amplitude of the image plane after 

the amplitude constraint 𝐴𝑘
′ : 

 

k

k ob

k

A
A A

A
 =  (6) 

 

After IFT of 𝐴𝑘
′ , we got 𝑎𝑘

′ = 𝑓𝑘 ∗ 𝑒𝑥𝑝( 𝑗𝜓𝑘), where, 𝑓𝑘 is 

the amplitude of the hologram in the 𝑘 − 𝑡ℎ iteration and 𝜓𝑘 

is the phase of the hologram before gradient descent in the 𝑘 −
𝑡ℎ iteration, using the gradient descent technology to act with 

the phase for faster convergence. The phase 𝜑𝑘+1  after 

gradient descent is defined as Eq. (7): 

 

1k k k k   + = +  (7) 

 

where, 𝛽𝑘  is the direction of the gradient, defined as the 

difference between 𝜓𝑘 and 𝜓𝑘−1, 𝜓𝑘−1 is the the phase of the 

hologram before gradient descent in previous iteration: 

 

1k k k   −= −  (8) 

 

𝛾𝑘 is the acceleration factor: 

 

1

2

1

k k

k

k

t t

t


−

−

=



 (9) 

 

where, the expression for 
kt is as Eq. (10): 

 

k k kt  = −  (10) 

 

thus constitutes an iterative add-on 𝛽𝑘𝛾𝑘 , increasing the 

gradient step size of the phase to speed up convergence. 
 

 

4. EXPERIMENTAL VERIFICATION AND ANALYSIS 
 

To verify the effectiveness of the algorithm proposed in this 

paper, we carried out numerical simulations and compared 

with the quadratic-phase-based GS, WGS and AWGS 

algorithms. Here, we applied some evaluation functions to 

compare the experimental results quantitatively. The first 

evaluation function is the RMSE between the reconstructed 

image and the target image, which is defined as follows: 

 

( ) ( )
2

arg

1 1

1
, ,

M N

k t et

m n

RMSE A m n A m n
MN = =

 = −   (11) 

where, M and N are the numbers of horizontal and vertical 

pixel points in the signal region image, 𝐴𝑘(𝑚, 𝑛)  is the 

intensity distribution of the reconstructed image of 𝑘 − 𝑡ℎ 

iteration, and 𝐴𝑡 𝑎𝑟𝑔 𝑒𝑡(𝑚, 𝑛) is the intensity distribution of the 

target image. The RMSE is a number greater than or equal to 

zero, with smaller values indicating better reconstruction 

quality. 

The second evaluation function is Structural Similarity 

(SSIM), which is defined as: 

 

( ) ( )
( ) ( )

arg 1 arg , 2

2 2 2 2

arg 1 arg 2

2 2t er k t et k

t et k t et k

c c
SSIM

c c

  

   

+  +
=

+ +  + +
 (12) 

 

where, 𝜇𝑡 𝑎𝑟𝑔 𝑒𝑟 and 𝜇𝑘 are the mean of the target image and 

the reconstructed image respectively; 𝜎𝑡 𝑎𝑟𝑔 𝑒𝑡  and 𝜎𝑘  are the 

standard deviation of the two respectively; 𝜎𝑡 𝑎𝑟𝑔 𝑒𝑡,𝑘  is the 

covariance between the two; and 𝑐1 and 𝑐1 are tiny numbers to 

avoid the denominator being zero. SSIM takes values between 

0 and 1, with larger values representing better reconstruction. 

The third evaluation function is the Peak Signal-to-Noise 

Ratio (PSNR), which is defined for 8-bit greyscale images as: 

 

255
20logPSNR

RMSE

 
=  

 
 (13) 

 

The higher the value, the better the reconstruction. 

In this simulation experiment, the target image selected is 

‘cameraman’. The resolution of both the target image and the 

hologram plane after zero-padding is taken as 512×512 pixels, 

the size of the signal area is 300×300 pixels, and the pixel size 

is 12𝜇𝑚. See Figure 6(a). According to Eq. (3) and Eq. (4), 

the parameters of the quadratic phase a and b are both set to 

0.01, as shown in Figure 6(b). 
 

               
     (a) Target image             (b) Quadratic initial phase 

 

Figure 6. Target image ‘cameraman’ and initial quadratic 

phase 

 

Figure 7 presents the POHs and reconstructed images 

generated by the GS, WGS, AWGS and AW-PGD GS 

algorithms at different numbers of iterations, as well as the 

values of the three evaluation parameters foreach 

reconstructed image. It shows that the reconstruction quality 

based on these four algorithms generally improves as the 

number of iterations increases. The RMSE of the GS algorithm 

is 0.073 at 50 iterations and drops to 0.0635 at 300 iterations, 

indicating that the reconstruction quality does not increase 

significantly with the number of iterations and falls into the 

trap of a locally optimal solution. The quality of the 

reconstructed images doesn’t become better when the number 

of iterations increases. Instead, the quality decreases. The 

AWGS algorithm is better than the GS and WGS algorithms. 

Although the reconstruction quality using the AW-PGD 
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algorithm is average at a low number of iterations, the 

reconstruction quality is better than the other three algorithms 

as the number of iterations increases, with the RMSE value 

down to 0.0057 at 300 iterations. The SSIM and PSNR also 

indicate the superiority of the AW-PGD algorithm. 

 

 
 

Figure 7. Reconstructed image and POHs under different numbers of iterations by different algorithm 

 

 
 (a) RMSE                                                (b) PSNR                                                        (c) SSIM 

 

Figure 8. Comparison of reconstructed quality parameter 

 

To see more clearly the relationship between the number of 

iterations and reconstruction quality, Figure 8 compares the 

values of the three parameters under the four algorithms. 

Figure 8(a) shows the RMSE under different number of 

iterations. It shows that although the AW-PGD algorithm is 

not the best when the number of iterations is small, the RMSE 

of the AW-PGD algorithm starts to perform better than the 

remaining three algorithms after 11 iterations, with an RMSE 

value of 0.08423. At the 100th iteration, the RMSE drops to 

0.01101, which is much better than the remaining three 

algorithms. Figure 8(b) shows the SSIM curve and Figure 8(c) 

shows the PSNR value curve. Both parameter curves show the 

superiority of the AW-PGD algorithm. 

To verify the effectiveness of the method proposed in this 

paper for other images, we used 'Lena', 'Lifting body' and 

'Baboon' as the target images for a simulation experiment. The 

reconstructed images based on these four algorithms are 

compared under the same parameters setting. In this 

experiment, the number of iterations was 100 and the rest of 

the parameters were set as above. In Figure 9, (a), (b), (c) and 

(d) present the reconstructed results and POHs obtained based 

on the GS, WGS, AWGS and AW-PGD algorithms 

respectively, with the values of RMSE, PSNR and SSIM 

compared to the target image marked below each 

reconstructed image. It can be seen that the AW-PGD 
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algorithm also delivers better results than the other three 

algorithms when used for other target images. 

We also compared the time cost of the AW-PGD algorithm  

with the other three algorithms, as shown in Table 1. Since 

above we found that the algorithm converges at around ten 

iterations, we also wanted to investigate further whether the 

time cost increases when the number of iterations is increase 

compared to the other three algorithms. Therefore, the number 

of iterations was set to 20, 50 and 100, and the rest of the 

parameters were the same as above. It can be seen that at 20 

iterations, the time cost of the AW-PGD algorithm is similar 

to that of the AWGS algorithm; at 100 iterations, the AW-PGD 

algorithm increases the time cost by less than 1s. 

 

Table 1. Comparison of time cost of the four algorithms 

under different number of iterations 

 
 20  50  100  

GS 1.486s 2.101s 3.151s 

WGS 1.560s 2.370s 3.830s 

AWGS 1.814s 2.596s 3.693s 

AW-PGD 1.816s 2.700s 4.490s 

 

In the AW-PGD method, the amplitude of the target image 

is divided into signal and non-signal regions, hence it is 

necessary to investigate the effect of the selection of the signal 

region size on the reconstruction effect and the time cost. 

 
 

Figure 9. Reconstruction of different target amplitude from POH based on GS, WGS, AWGS and AW-PGD 

 

 
 

Figure 10. The relationship between the size of the signal region and RMSE and time cost 
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Figure 10 illustrates the relationship between the signal 

region size and the RMSE value and time cost. Here, the size 

of the entire target image, including the non-signal region, is 

512 × 512 pixels, where the size of the signal region is 100 × 

100, 200 × 200, 300 × 300, 400 × 400, 500 × 500 and 512 × 

512. The corresponding parameters of the quadratic phase are 

selected as 0.03, 0.01, 0.007, 0.006 and 0.0061, with 100 

iterations. It can be seen that as the signal area increases, the 

RMSE values increase and the reconstruction quality 

decreases, with little effect on the time cost. 

 

 

5. CONCLUSIONS 

 

This paper proposes a hybrid constrained AW-PGD 

iterative algorithm to compute and generate higher quality 

POHs. Use the quadratic phase as the initial phase because 

the quadratic phase has the advantage of suppressing speckle 

noise. By the way of zero-padding around the target image to 

improve the reconstruction quality. In the process of iteration, 

an adaptive dynamic constraint strategy is used on the image 

plane to improve the reconstruction quality and relax the 

constraint on the non-signal region to reduce the 

computational effort; a gradient descent algorithm is used on 

the hologram plane to speed up the convergence. Numerical 

simulation results show that this method has higher 

reconstruction quality than the GS, WGS and AWGS 

algorithms, and does not significantly increase the time cost. 

In addition, this paper investigates the effect of the selection 

of the signal region size on the reconstruction effect and time 

cost. The algorithm has the advantages of low computational 

effort, high reconstruction quality and simple optical path. 

Accordingly, the algorithm has good prospects for 

applications in hologram projection and atom capture. 
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NOMENCLATURE 

 

𝑢0 the initial complex amplitude of the 

hologram plane in GS 

𝑈1 the complex amplitude of FT of 𝑢0 

|𝐴𝑡 𝑎𝑟𝑔 𝑒𝑡| amplitude of target image 

𝑈1
′  complex amplitude of 𝑈1 after amplitude 

replacement  

𝑢1
′ Inverse Fourier Transform of 𝑈1

′  

𝑢𝑘 complex amplitude of the hologram plane 

after 𝑘 iterations in GS 

𝑈𝑘 complex amplitude of the image plane after 

𝑘 iterations in GS 

𝐴0 the initial complex amplitude of the image 

plane in AW-PGD 

𝑎0 IFT of 𝐴0 

𝑎1 the phase of 𝑎0 

𝑎𝑘 the complex amplitude of the 𝑘-th iteration 

of the hologram plane 

𝜑𝑘 the phase of 𝑎𝑘 

𝐴𝑘 the complex amplitude of the 𝑘-th iteration 

of the plane 

|𝐴𝑜𝑏| the amplitude of 𝐴𝑘
′  

𝐴𝑘
′  complex amplitude after the amplitude of 

𝐴𝑘 is replaced 

𝑎𝑘
′ IFT of 𝐴𝑘

′  

𝑓𝑘 the amplitude of the hologram plane in the 

𝑘-th iteration 

𝑡𝑘 𝜓𝑘 − 𝜑𝑘 

 

Greek symbols 

 

𝜇0 initial phase in GS 

𝜙 quadratic phase 

𝜓𝑘 the phase distribution of 𝑎𝑘
′ 

𝜑𝑘+1 phase value of 𝜓𝑘 after gradient descent 

𝛽𝑘 the direction of the gradient in the 𝑘 -th 

iteration 

𝛾𝑘 the acceleration factor in the k -th iteration 

 

Subscripts 

 

𝑘 number of iteration 

𝑚 horizontal coordinates of signal area 

𝑛 vertical coordinates of signal area 

𝑎 the parameters between 0  and 1 

𝑏 the parameters between 0  and 1 

𝑀 horizontal pixel points in the signal area 

𝑁 vertical pixel points in the signal area 

𝑅𝑀𝑆𝐸 root mean squared error 

𝑃𝑁𝑆𝑅 peak signal noise ratio 

𝑆𝑆𝐼𝑀 structural similarity 
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