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Explaining the decision mechanism of Deep Convolutional Neural Networks (CNNs) is a 

new and challenging area because of the “Black Box” nature of CNN's. Class Activation 

Mapping (CAM) as a visual explainable method is used to highlight important regions of 

input images by using classification gradients. The lack of the current methods is to use all 

of the filters in the last convolutional layer which causes scattered and unfocused activation 

mapping. HayCAM as a novel visualization method provides better activation mapping and 

therefore better localization by using dimension reduction. It has been shown with mask 

detection use case that input images are fed into the CNN model and bounding boxes are 

drawn over the generated activation maps (i.e. weakly-supervised object detection) by three 

different CAM methods. IoU values are obtained as 0.1922 for GradCAM, 0.2472 for 

GradCAM++, 0.3386 for EigenCAM, and 0.3487 for the proposed HayCAM. The results 

show that HayCAM achieves the best activation mapping with dimension reduction.  
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1. INTRODUCTION

In recent years deep learning methods such as

Convolutional Neural Networks (CNNs) [1] have found 

widespread use. Since the CNNs can extract and classify 

image features automatically, high-performance values for 

computer vision practices (e.g. image classification, object 

detection, image segmentation, etc.) have been achieved in 

medical [2-4], industrial [5-7], agricultural [8-10] and military 

[11-13] areas. 

Although the CNNs achieve high performances, how they 

decide is not known because a CNN consists of hundreds of 

non-linear operations and parameters (i.e. CNNs are also 

known as "Black Box" models) [14]. Explainable Artificial 

Intelligence (XAI) is a working area aiming at providing 

numerical, rule-based, and visual explanations to make black 

box models transparent. Especially visual explanations are 

commonly used for deep CNNs [15].  

The goal of the visual explanation is to highlight the image 

regions causing the models’ decision (e.g. important regions, 

object parts, etc.). Class Activation Mapping (CAM) generates 

activation maps by using convolutions and weights of the 

CNNs [16]. After CNN made a decision, CAMs highlight the 

class-related regions over the input images so that end users 

understand why a decision is made. For instance, if a CNN 

model classifies a medical image into an "unhealthy" class, 

CAM aims to highlight the "unhealthy" parts of the medical 

image. 

However, the CAM has limitations in that (i) it does not use 

fully-connected layers (ii) it is model-dependent (iii) it 

requires model retraining. To overcome the limitations 

Gradient-weighted CAM (Grad-CAM) [17] methods have 

been developed. The Grad-CAM methods are called posthoc 

methods which means they can be directly applied to the 

CNNs models without changing any layer after the training 

and give better explanations than CAMs. 

Figure 1. The summarizing of the created HayCAM 

HayCAM as a novel visual explanation method for deep 

CNNs is proposed to give a better activation mapping in this 

study. The summarizing of the HayCAM can be seen in Figure 

1. Figure 1 shows that an input image is resized and fed into

the CNN model to get gradients. By using one of the

dimension reduction methods that is Principal Component

Analysis (PCA), the filters are reduced and HayCAM outputs

are obtained.

In addition to the explanation sides of the CNNs, better 

activation mapping brings together better localization that can 

be used for object detection. By using the activation maps a 

classifier model is getting the ability to work as an object 

detector [18-20]. As shown in Figure 2 when 512 filters exist, 

the GradCAM’s outputs seem to be scattered and unfocused. 
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When dimension reduction is used, 512 filters are reduced to 

19 and better activations are obtained. 

Figure 2. The illustration of the Haycam. 512 filters cause 

scattered and unfocused activations maps. Selecting 

important filters, HayCAM propose better activation 

mapping 

The proposed HayCAM as a novel visual explanation 

method provides better activation mapping and object 

detection performance among the other Grad-CAM methods 

which are Grad-CAM, Grad-CAM++, and Eigen-CAM. Our 

main contributions are as follows: 

• A new visual explanation method named "HayCAM"

is proposed that does not require any changes in the

architecture of CNNs.

• Class activation mapping is improved by selecting

important convolutions in the CNNs.

• Resnet18 trained as a classification model is used as an

object detection model.

• Face mask detection is realized using CNNs being a

classifier.

The rest of the paper is organized as that the activation 

mapping works are given in Sec II, the methods having high 

importance for HayCAM and material are described in Sec III, 

how the described methods are used together is detailed in Sec 

IV, and the results are given in the Sec V. The Sec VI and Sec 

VII show the importance of the achieved results for the 

proposed HayCAM. 

2. RELATED WORK

Visualization is one of the most common techniques to 

make CNN models explainable [21]. Perturbation-based 

methods observe the prediction changes by windowing the 

input images with differently shaped regions [22, 23]. Since 

the windowing operation requires many iteration over the 

input images, perturbation-based methods’ time cost is bigger 

than the HayCAM. 

LIME creates linear models by changing the input features, 

and the linear models decide which features affect the 

classification performance [24]. By not depending on the 

linear models, SHAP [25] measures the contributions of the 

features but its computational cost bigger than the LIME. As a 

rule-based method ANCHORS [26] evaluate all feature space 

and creates if-then rules so that explanations are obtained. 

When compared to these methods, HayCAM as a gradient-

based method uses non-linear features and does not depend on 

the if-then rules. 

Zeiler et al. [27] propose Deconvolution Networks that 

extract feature layers from input images by setting a hierarchy. 

In contrast to HayCAM, it is unsupervised and pixel-space 

gradient architecture and is not able to produce class-

discriminative visualizations. 

CAM methods are widely used to generate visual 

explanations for an input image. The last convolutional layers 

are weighted by the class-related activations. The first CAM 

approach [16] uses the last convolutional layer and global 

average pooling to obtain weighted layers. The drawbacks of 

this approach are that (i) it does not use fully-connected layers 

(ii) model-dependent (iii) require model retraining. Since

fully-connected layers are not used in the CAM, accuracy does

not achieve high values [28].

Since the CAM has limitations, Grad-CAM [17] becomes 

useful to obtain class-related visual explanations. It does not 

require any architectural changing or retraining. It uses 

gradients of desired classes flowing into the last convolution 

layers to highlight important regions (i.e. it is a class-

discriminative method but does not provide fine-grained 

details). Grad-CAM++ [28] removes the GAP dependency by 

adding second-order gradients. XCAM [29] scales the 

gradients by the activations after normalization. ScoreCAM 

[30] as a posthoc visualization method does not rely on the

gradients. It combines the perturbation and CAM-based

methods by extracting each activation map with forwarding

passes. It brings together the weights and activations linearly.

AblationCAM [31] is also a class-discriminative method like

Grad-CAM by using ablation analysis. It measures how

individual feature maps drop. However, it needs to iterate the

gradients many times. LayerCAM [32] uses different layers of

CNN architectures and generates activation maps. Although

the CAM-based methods can generate the activation maps,

they are suffering from using all of the filters in the

convolutional layers. HayCAM using dimension reduction

removes the unrelated filters to generate better activation

mapping.

EigenCAM [33] uncovers the important parts of the input 

images without modifying the CNN architectures. It computes 

the important layers by applying Singular Value 

Decomposition (SVD) and generates smooth activation maps 

compared to other methods. However, it reduces to one filter 

which causes losing the importance of related filters. The 

proposed HayCAM uses principal component analysis as a 

dimension reduction method and selects the important filters 

to provide better activation maps. 

3. MATERIAL AND METHOD

The dataset used for classification has been collected from 

both open-source and custom images. The details of the 

collected dataset can be found in “Explainable artificial 

intelligence: How face masks are detected via deep neural 

networks” [34] by Ornek et al. The dataset consists of 18400 

balanced training images belonging to the "mask" and "no 

mask" classes. The randomly selected images are shown in 

Figure 3. When coming to the hardware and software 

properties used for the practices, can be seen in the Table 1.  

Table 1. The used properties for the trainings 

Programming Language Python 

Training Environment Linux 

Deep Learning Framework PyTorch 

GPU Tesla K80 

Images with mask 9200 

Images without mask 9200 

1712



As shown in Table 1 the balanced dataset contains 18400 

images with and without mask images. As a programming 

language Python, deep learning framework PyTorch, and 

training environment Linux with Tesla K80 GPU have been 

used. 

Figure 3. The randomly selected images from the open-

source dataset 

3.1 Convolutional Neural Networks (CNNs) 

An image classification process can be divided into two 

categories that are feature extraction and classification. There 

are traditional feature extraction methods such as histograms 

of oriented gradients [35] and classification methods such as 

logistic regression, decision trees, support vector machines, 

and artificial neural networks [36-39]. Whereas image features 

are extracted by hand and classified in the traditional methods, 

these operations are automatically realized by a CNN model 

[1]. 

As seen in Figure 4, a CNN model consists of convolutional 

and fully-connected (FC) layers. The convolutional layer is the 

combination of convolution (C) and pooling (P) operations 

that are used for extracting and reducing features, respectively. 

When an input image is fed into a CNN model, it goes through 

these layers to get the outputs. 

Figure 4. The basic CNN architecture. The convolution (C) 

and pooling (P) operations are for feature extraction, and the 

fully-connected (FC) layer is for the classification 

Each convolution layer carries different meanings of the 

given images for example while first convolutions have low-

level features such as curve, last convolutions have high-level 

features such as different parts of the images a.k.a patterns [40]. 

Image classification, object detection and segmentation 

problems are solved by using CNN models with high 

performance values. This model; however, are known as 

"Black Box" models because millions of non-linear operations 

and parameters exist in their mechanisms. 

3.2 Training the CNN model 

To classify images into "mask" and "no mask" classes 

transfer learning technique was used in this study. As 

described in the previous section, when diving into the CNN 

layers it is seen that while the first layers learn low-level 

features such as edge, the last layers learn high-level features 

such as parts of input images. Instead of training the feature 

extractor part of the CNN model from scratch, a pre-trained 

model is used as a feature extractor and classifier. Transfer 

learning can be applied by freezing the first Convolution-

Convolution-Pooling-Convolution and training the remaining 

Convolution-Pooling-Fully connected layers as seen in Figure 

5. 

Figure 5. The illustration of basic transfer learning. First 

Convolution-Convolution-Pooling-Convolution are frozen 

and the remaining Convolution-Pooling-Fully connected 

layers are trained 

Resnet-18 [41] was selected as the pre-trained model that 

includes 1000 classes belonging to ImageNet [42] dataset. All 

pre-trained models are always trained with the ImageNet 

dataset to prove their performance [43-48].  

As shown in Figure 5, the first layers of the pre-trained 

models having low-level features are frozen and only the last 

layers are trained while the learning process. Since ImageNet 

has 1000 classes, the changes being at Algorithm 1 should be 

followed.  

As shown at the Algorithm 1 last layer is removed from the 

pre-trained model and new neurons are added. By freezing the 

first layers, the model is retrained with the dataset. For the 

mask classification 2 neurons are added to the pre-trained 

model as a last layer [49]. 

Algorithm 1. Transfer learning 

Require: X: Pre-trained Model, n: numberof classes 

1: X ← remove_last_layer(X) 

2: X ← add_new_neurons(n) 

3: X ← freeze_first_layers(X) 

4: X ← retrain(X) 

3.3 Residual Neural Network (Resnet) 

When more convolutional layers are used for classification, 

the product value of the derivatives close to zero and vanishes 
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this issue is known as the vanishing gradient [50]. Achieving 

more performance requires more convolutional layers; 

however, as more convolutional layers are used the vanishing 

gradient problem is seen while the training process. 

Resnet is one of the CNN models aiming at providing 

training without vanishing gradient and makes it possible to 

train hundreds of layers with high performance [41]. The 

Resnet uses skip connections to jump over the layers. This 

layer allows derivatives to be propagated from the last layers 

to the first layers. 18 layers deep Resnet model known as 

Resnet18 is shown in Figure 6. 

 

 
 

Figure 6. The Resnet18 architecture. (a,b) represents b pieces 

axa convolution operations (e.g. (3, 64) represents 64 pieces 

3x3 convolution operations). The arrows show the skip 

connections to propagate the derivatives from last layers to 

first layers 

 

3.4 Gradient-weighted class activation mapping (Grad-

Cam) 

 

The CAM method highlights the class-related regions in the 

input images [16]. The Grad-CAM utilizes the class-related 

gradients flowing into the last convolutional layer to uncover 

the important parts of the input images [17]. The last layers of 

the Resnet-18 can be seen in Figure 7. 

 

 
 

Figure 7. The last three layers of the Resnet18. (a) last 

convolutional layer including 512 pieces 7x7 convolutions. 

(b) Global Average Pooling that includes 512 pieces 512 

pieces 1x1 convolutions. (c) fully-connected layer including 

two neurons (before the transfer learning there are 1000 

neurons) 
 

As shown in Figure 7 (a) Resnet-18 has 512 pieces of 7x7 

convolutions in the last convolutional layer. To decrease their 

size from 7x7 to 1x1 Global Average Pooling (GAP) (1) 

operation is used in Figure 7 (b). Finally, 2 neurons are used 

for classification Figure 7 (c). 

 

𝐺𝐴𝑃 =  
1

𝑁
∑ ∑ 𝐴𝑗𝑘

ℎ

𝑘𝑗

 (1) 

 

where, Ahjk is the activations of hth layer. By using the GAP 

operation, the average values of each layer are calculated. In 

order to get the importance of feature maps whc (GradCAM) 

is calculated for the hth layer and class c (2). 

 

𝑤ℎ(𝐺𝑟𝑎𝑑𝐶𝐴𝑀)
𝑐 =

1

𝑁
∑ ∑

𝜕𝑦𝑐

𝜕𝐴𝑗𝑘
ℎ

𝑘𝑗

 (2) 

 

𝐿(𝐺𝑟𝑎𝑑𝐶𝐴𝑀)
𝑐 = ∑ 𝑤ℎ(𝐺𝑟𝑎𝑑𝐶𝐴𝑀)

𝑐 𝐴ℎ

ℎ

 (3) 

 

The gradients of the Yc w.r.t Ah are first computed to 

achieve the Lc (3) that is the activation (importance) map. 

The GAP is applied to the gradients in order to get the wc h 

(importance weights). The GradCAM process can be 

summarized as: 

• Compute the gradients of the Yc w.r.t Ah 

• Flow back the gradients by applying the GAP 

• Do a weighted combination of whc and Ah 

• Eliminate the negative values with ReLU 

When come to the GradCAM++ (4), creating the whc (5) 

changes. 

 

𝐿(𝐺𝑟𝑎𝑑𝐶𝐴𝑀++)
𝑐 = ∑ 𝑤ℎ(𝐺𝑟𝑎𝑑𝐶𝐴𝑀++)

𝑐 𝐴ℎ

ℎ

 (4) 

 

𝑤ℎ(𝐺𝑟𝑎𝑑𝐶𝐴𝑀++)
𝑐 = ∑ ∑ 𝛼𝑗𝑘

ℎ𝑐𝑅𝑒𝐿𝑈(
𝜕𝑌𝑐

𝜕𝐴𝑗𝑘
ℎ )

𝑘𝑗

 (5) 

 

where, αjkhc is pixel-wise weighting values for class c and Ah 

convolutional layer. The GradCAM++ uses ReLU to ignore 

the negative gradients (i.e. negative values belonging to other 

categories) [28]. The sample activation maps (Lcs) are shown 

in Figure 8. 

 

 
 

Figure 8. The randomly selected activation maps 

 

3.5 Principal Component Analyis (PCA) 

 

The dimension reduction methods are used to decrease the 

feature complexity by selecting prominent features from the 

feature space (i.e. calculating the feature importance) [51]. 

PCA is one of the dimension reduction methods. It sorts the 

features’ importance by measuring the eigenvalues [52]. The 

PCA algorithm can be seen in Algorithm 2.  

According to Algorithm 2, the average value is calculated 

and subtracted from each value to center the input data. The 

centered data is used for calculating the covariance matrix. By 

using the covariance matrix eigenvalues and eigenvectors are 

calculated so that the input’s features are sorted by the 

eigenvalues. After the sorting eigenvectors are obtained in 
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descending order and the first n components are selected as 

important features. The centered data and the selected features 

are multiplied by the dot product, and reduced data is obtained 

to be used in the practices. How the PCA is used with Resnet-

18 is detailed in Sec IV. 

 

Algorithm 2. PCA 

 

Require: X: input, n: number of components 

1: X ← X − mean(X) 

2: Cov ← CovarianceMatrix(X) 

3: EigenValues ← getvalues(Cov) 

4: EigenVectors ← getvectors(Cov) 

5: EigenValues ← sort(EigenValues) 

6: EigenVectors ← related(EigenValues) 

7: EigenVectors ← get(EigenVectors[: n]) 

8: Output ← X EigenVectors 

 

 

3.6 Intersection Over Union (IoU) 

 

The object detection models return four values which are x, 

y, w, and h for a detected object where (x, y) is the top left 

point’s coordinates, w is width, and h is the height of the 

bounding box [53] as seen in Figure 9 (a).  

The solid line in Figure 9 is called a ground truth bounding 

box labeled by hand before the training. An object detector 

tries to properly fit onto the hand-labeled images. 

The dashed lines in Figure 9 show the predicted bounding 

box by the detector. 

 

 
 

Figure 9. The bounding box, intersection and union 

annotations 

 

IoU (6) is used to evaluate the performance of object 

detection models or object detectors [54]. It calculates how 

ground truth and predicted bounding boxes are similar by 

taking intersection and union areas into account. IoU appears 

between [0, 1], and the values being close to 1 refer to better 

fitting. 

 

𝐼𝑜𝑈 =
𝑎𝑟𝑒𝑎_𝑜𝑓_𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝑎𝑟𝑒𝑎_𝑜𝑓_𝑢𝑛𝑖𝑜𝑛
 (6) 

 

 

4. EXPERIMENTS 

 

This section describes how the methods are used together to 

create the proposed HayCAM. 

HayCAM is a post-pone XAI method like GradCAM which 

means it can be applied to the CNN models without changing 

their architectures. In this study Resnet18 architecture is 

selected as the CNN model and trained with face mask images. 

The Resnet18 as a pre-trained model has 1000 neurons at the 

fully-connected layer; however, mask classification requires 

two neurons to be responsible for the "mask" and "no mask" 

classes. 

To train the Resnet18 with mask images two neurons were 

placed in the fully-connected layer as shown in Figure 7. The 

pre-trained model has been trained with 18400 mask images 

belonging to the "mask" and "no mask" classes as described in 

Section III-B. The hyper-parameters used for training are as 

follows; learning_rate: 0.001, momentum: 0.9, loss: cross 

entropy, epoch: 30, optimizer: stochastic gradient descent. 

After the training was completed, the model achieved 

96.58% accuracy. But the problem is that it was not known 

how the model decides that there is a mask in the given image. 

To make the Resnet18 model transparent GradCAM, 

GradCAM++, EigenCAM and proposed HayCAM methods 

have been used so that activation maps will be obtained. The 

GradCAM as the base method, is detailed at Algorithm 3. 

 

Algorithm 3. GradCAM 

 

Require: X: image 

1: X ← resize(X, 224) 

2: y ← inference(X) 

3: convlayer ← reshape(convlayer) 

4: w ← weights(fcl) 

5: GradCAM ← w * convlayer 

6: GradCAM ← reshape(GradCAM) 

7: GradCAM ← resize(GradCAM) 

 

According to Algorithm 3, an input image is resized to 

224x224, and the class value is obtained by inference. The last 

convolutional layer is reshaped from (7x7, 512) to 49x512 and 

multiplied with the class-related weights between the GAP and 

the fully-connected layer. To produce the GradCAM, the 

obtained 1x49 activations are reshaped to 7x7 and then resized 

to 224x224. The final 224x224 matrix is called as GradCam. 

When the activation maps are created by the GradCAM, it 

is realized that activation maps appear over the mask parts of 

the given image but they were in a scattered state (the scattered 

activations can be seen in the following section Figure 12 (a)). 

The reason is that Resnet18 has 512 convolutions in the last 

convolutional layer and all of the layers are used to create the 

final activation map. 

To avoid using all 512 convolutions while creating the final 

activation map, HayCAM proposed a new method that selects 

the important convolutions in the last convolutional layer by 

using a dimension reduction method known as PCA. The 

proposed HayCAM algorithm is shown in Algorithm 4. 

Algorithm 4 resizes the input images to 224x224 and makes 

an inference to get the class information. The last 

convolutional layer having 512 pieces of 7x7 convolutions is 

reshaped to 49x512 and the PCA algorithm is applied to the 

layer. The first 19 convolutions are selected as having the 

high-class information, then multiplied with the related 

weights. The HayCAM is created by reshaping the obtained 

1x49 activations to 7x7 and resizing them to 224x224. 

The HayCAM structure is shown in Figure 10. By using the 

HayCAM, convolutions that are less important in view of the 

classes are reduced so that only main convolutions are used to 
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create the activation maps. HayCAM refers to name of both 

the method and created activation map. 

 

Algorithm 4. HayCAM (proposed) 

 

Require: X : image, n : number_of_components 

1: X ← resize(X, 224) 

2: y ← inference(X) 

3: convlayer ← reshape(convlayer) 

4: convlayer ← convlayer − mean(convlayer) 

5: Cov ← CovarianceM atrix(convlayer) 

6: EigenValues ← getvalues(Cov) 

7: EigenVectors ← getvectors(Cov) 

8: EigenValues ← sort(EigenValues) 

9: EigenVectors ← related(EigenValues) 

10: EigenVectors ← get(EigenVectors[: n]) 

11: w ← get_related_weights(fcl) 

12: HayCAM ← w EigenVectors 

13: HayCAM ← reshape(HayCAM) 

14: HayCAM ← resize(HayCAM) 

 

 
 

Figure 10. The proposed architecture 

 

 

5. RESULTS 

 

How experiments are realized and HayCAM is created has 

been detailed in the previous section. The results section gives 

the outputs of the experiments which are model performance, 

visualizing the activation maps, and drawing bounding boxes. 

To compare HayCAM with the other methods GradCAM, 

GradCAM++, and EigenCAM methods are selected. Three 

test images are used to visualize the obtained results and 160 

test images are used to measure the object detection 

performance. Figure 11 shows the outputs of the Grad-CAM, 

GradCAM++, EigenCAM, and proposed HayCAM. and 

Figure 12 shows the combination of input images and outputs 

of the GradCAM, GradCAM++, EigenCAM, and proposed 

HayCAM. 

After activation maps like those shown in Figure 8 are 

created four coordinates x, y, w, and h of the bounding boxes 

are calculated. The obtained images with bounding boxes can 

be seen in Figure 13. 

As described in Sec III-F ground truth bounding boxes are 

created by hand and object detectors try to find the optimum 

bounding boxes. IoU is used to measure how predicted 

bounding boxes are close to ground truths. 160 different 

images are used to calculate the IoU values for the Grad-CAM, 

GradCAM++, EigenCAM, and proposed HayCAM. The 

detailed IoU values are given in Table 2. As seen in Table 2, 

the proposed HayCAM has the highest average IoU value for 

the input images. 

 
 

Figure 11. CAM activation results 

 

 
 

Figure 12. CAM results 

 

Table 2. IoU values for all images 

 
Image GradCAM GradCAM++ EigenCAM HayCAM 

Image 1 0.1721 0.2438 0.3246 0.3627 

Image 2 0.2128 0.3070 0.3666 0.4822 

Image 3 0.1116 0.1463 0.1959 0.2436 

Image 4 0.2612 0.2669 0.4425 0.5269 

Image 5 0.2291 0.3415 0.4298 0.4420 

Image 6 0.0523 0.1214 0.1784 0.1963 

Image 7 0.0520 0.1148 0.1701 0.1766 

Image 8 0.0499 0.1188 0.1647 0.1829 

Image 9 0.1077 0.1651 0.2316 0.2529 

Image 10 0.0953 0.1664 0.2404 0.2553 

Image 11 0.2501 0.3101 0.4144 0.4483 

...  ... ... ... ... 

Image 151 0.2259 0.2797 0.3407 0.4381 

Image 152 0.2217 0.2832 0.3392 0.4219 

Image 153 0.1529 0.2438 0.3397 0.4037 

Image 154 0.1486 0.1898 0.3104 0.3676 

Image 155 0.1359 0.1856 0.2771 0.3466 

Image 156 0.1232 0.1695 0.2972 0.3187 

Image 157 0.1205 0.1484 0.2018 0.2115 

Image 158 0.1613 0.2226 0.3061 0.3223 

Image 159 0.1651 0.2341 0.3021 0.3454 

Image 160 0.1486 0.1898 0.3104 0.4277 

Average 0.1922 0.2472 0.3386 0.3487 

 

 

6. DISCUSSION 

 

This section discusses the results and shows the importance 

of the proposed novel HayCAM method. Figure 12 shows that 

all visualization methods are able to point to which part of the 

input image is learned by the model. In addition to that the 

methods’ aim is also provide properly distributed activations 

for the related class information. 
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As seen in the Figure 12 while the outputs of the GradCAM 

are in scattered state, GradCAM++ creates in properly 

distributed state. The difference between them is that Grad-

CAM++ uses second-order and positive gradients. 

When come to the outputs of EigenCAM and proposed 

HayCAM it is seen that the outputs’ distributions are gathered 

around the class information. EigenCAM uses the SVD 

technique to reduce the dimension of the last convolutional 

layer used to create the activation maps; but it directly reduces 

from 512 convolutions to 1 convolution. This causes losing the 

class-related information. Instead of reducing from 512 to 1 

convolution, HayCAM selects more convolutions having 

more class information by using the PCA method and reduces 

convolutions from 512 to 19 convolutions. Therefore, 

HayCAM provides better activation maps around the class 

information. 

By using the created activation maps object detection is 

realized by drawing bounding boxes around the high-valued 

activations. As can be seen in Figure 13, Resnet18 being a 

classification model can find the objects’ coordinates in the 

images. 

Figure 13. Box detection results IOU values are (b): 0.2061 

(c): 0.3062 (d): 0.3714 (e): 0.2061 (f): 0.3714 (h): 0.0875 (i): 

0.2973 (j): 0.0875 (k): 0.3604 (l): 0.4635 

As described for the activation maps, better-created 

activations provide better object detection performance that is 

calculated with IoU. The IoU values can be seen in Table 2. 

When looking at the average IoU values for 160 images it is 

seen that GradCAM: 0.1688, GradCAM++: 0.2472, Eigen-

CAM: 0.3386, and proposed HayCAM: 0.3487. Whereas the 

worst IoU is obtained by GradCAM, the best IoU is obtained 

by the proposed HayCAM method. 

7. CONCLUSION

The visual explanation methods, aiming at creating 

activation maps that point to class information, are developed 

to highlight the class-related parts of the input images. 

HayCAM as a novel visualization method provides better 

activation mapping and therefore better localization by using 

dimension reduction. 

The most important limitation of the HayCAM is selecting 

the number of PCA components. The XAI methods will find 

more places in the future since just making the right decision 

is not enough for the end-users and developers. The decision 

mechanism also should be explained to the experts to build 

trust in the decisions. We will be continuing to work on XAI, 

and providing new methods that do not require manually 

selected parameters such as the number of PCA components 

with new use cases in the future works. 
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