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Deep learning is not the most accurate way for recognizing time series signals, and it is 

unable to identify non-stationary time series signals with numerous chaotic classes. 

Moreover, the signal detection benefits from data preprocessing have gone unnoticed. 

Therefore, this paper investigates the detection and analysis of non-stationary time series 

signals using deep learning and data preprocessing. The fitting model of the historical 

stationarity index is built based on the Gaussian mixture model of single Gaussian models, 

and the change point of the non-stationary time series signal is detected. To further increase 

the signal's recognition rate, the non-stationary time series signal is preprocessed using the 

truncated migration algorithm. The main classification task and the auxiliary classification 

tasks are constructed to identify non-stationary time series signals characterized by huge 

chaotic classes through multi-task learning. The efficiency of the suggested method and 

model is validated by experimental data. 
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1. INTRODUCTION

Time series signals can illustrate how things or phenomena 

change over time in terms of their state or intensity. This 

energizes ongoing studies into these signals [1-6]. One of the 

key study areas is the identification and analysis of non-

stationary time series signals, which has been applied in a 

variety of industries and fields, including streaming media, 

meteorology, medicine, and business [7-17]. Researchers both 

domestically and internationally have been using deep 

learning techniques with significant self-learning capabilities 

to detect time series signals in recent years, but the signal 

recognition rate is still suboptimal [18-23]. With change point 

monitoring as a representative application scenario, the 

extraction of time series signal stationarity indicators and the 

development of deep learning techniques to enhance signal 

recognition accuracy represent an unavoidable trend and have 

significant practical implications. 

It is well known that research has been done on non-

stationary acoustic signal filtering techniques based on 

wavelet threshold denoising. This method calls for the usage 

of a significant amount of CPU resources for processing huge 

volumes of data. A different method for building CF based on 

the McCulloch-Pitts neuron model was proposed by Khobotov 

et al. [24]. This neuron-like CF relies exclusively on logical 

processes, which employ fewer CPU resources, and is based 

on particular nonlinear transformations of input and test 

signals. The results are thought to be applicable to a wide range 

of real-world scenarios involving long-range sonar, seafloor 

detection, and non-stationary environments. Empirical Fourier 

Decomposition (EFD), a method that combines the improved 

Fourier spectral segmentation methodology and the usage of 

zero-phase filter banks, was proposed by Zhou et al. [25] as a 

precise adaptive signal decomposition tool. A numerical 

analysis was done to look at the reliability and accuracy of 

EFD. The results demonstrate that for signals with several 

non-stationary modes and closely spaced modes, EFD can 

yield accurate and reliable decomposition results. Ding et al. 

[26] created the Kernel Ridge Regression-based Chirp

Transform (KRR-CT) to precisely identify the TF features of

non-stationary signals and build energy-concentrated TF flats

since the solution of the polynomial approximation is easily

influenced by noise or interference. Even with significant

noise present, a stable solution can be produced in the KRR-

CT approximation stage. Wang et al. [27] addressed a number

of frequently employed time-frequency analysis techniques

for non-stationary signals, examined these techniques with

mixed signals and noise, and then went into great depth into

the benefits and drawbacks of each technique. The study of the

time-frequency of the continuous wave radio Doppler signal

produced when the missile strikes the target using an enhanced

time-frequency analysis approach based on STFT is proposed.

The aforementioned technique is used to process real

experimental data, and positive results are obtained. This

validates that the method is feasible and effective, and will

significantly support any further information processing or

calculation.

Research on various non-stationary signal identification and 

analysis techniques based on signal processing theory has been 

extensive both domestically and internationally. While 

neglecting the positive impact of data preprocessing on signal 

identification, there is currently no solution that can address 

the issue of recognizing non-stationary time series signals of 

vast chaotic classes. Therefore, this work investigates the 
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detection and analysis of non-stationary time series signals 

using deep learning and data preprocessing. Chapter 2 

completes the identification of the change point of the non-

stationary time series signal and builds the fitting model of the 

historical stationarity index based on the Gaussian mixture 

model of single Gaussian models. To further increase the 

signal's recognition rate, the non-stationary time series signal 

is preprocessed in Chapter 3 using the truncated migration 

algorithm. The main classification goal and an auxiliary 

classification assignment are designed in Chapter 4 to identify 

non-stationary time series signals characterized by vast chaotic 

classes. The efficiency of the suggested method and model is 

validated by experimental data. 

 

 

2. CHANGE POINT DETECTION 

 

Time series signal stationarity can be dynamically defined 

via stationarity indicators. The amplitude of the stationarity 

index will quickly grow or drop for non-stationary time series 

signals as the signal transitions from a stationary to a non-

stationary state. It is evident that the change in the condition 

of the time series signal occurs at the same time as the 

stationarity index begins to fluctuate. It is required to find the 

non-stationary time series signal's transition point before 

recognizing the non-stationary time series signal itself.     

Building a fitting model of the historical stationarity index 

first, then determining if the present stationarity index 

complies with the model, is the typical method for detecting 

changes in the stationarity index. The historical stationarity 

index fitting model in this study is built using the Gaussian 

mixture model of single Gaussian models. The probability 

distribution formula for the single Gaussian model is given by 

the expression ω=(r*, ε2), where r* and ε are the mean and 

standard deviation of the estimated Gaussian distribution, 

respectively: 

 

( )
( )

2

22

1
| exp

22

r r
h r 



 −
 = −
 
 

 
(1) 

 

r* and ε can be respectively calculated by: 
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Let βh be the mixture coefficient of each Gaussian model, 

and βh≥0, ∑H
h=1 βh=1. The probability distribution of the 

Gaussian mixture model composed of h single Gaussian 

models can be expressed as: 
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The distribution density ψ(r|ωh) of the h-th Gaussian model 

can be given by:  
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Let ωh=(rh
*,ε2

h) be the h-th Gaussian model, whose mean 

and standard deviation are similar to Eq. (2) and Eq. (3), 

respectively. Then, the Beta distribution is defined in the (0, 1) 

interval. Assume that the hyperparameters of the Beta 

distribution are represented by β and γ, and the Beta function 

is represented by Y(β, γ). The probability distribution of the 

Beta distribution can be expressed as: 
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The Beta function Y(β, γ) can be expressed as: 
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The single Gaussian model constructed in this way is 

suitable for any random time series signal data. ITo detect 

whether the abnormality of the time series signal occurs at the 

(m+1)-th time, this paper conducts a hypothesis test on the 

model based on the PauTa criterion. Assuming that |rm+1-

rm
*|<lε is satisfied, then the time series signal state does not 

change at the (m+1)-th moment, represented by F0; when |rm+1-

rm
*| ≥lε, the signal state changes, denoted by F1, means that the 

following process: 

 

0 1

1 1

:

:

m m

n n

F r r l

F r r l





+

+

− 

− 
 (8) 

 

 

3. SYMBOL RECOGNITION 

 

The traditional signal recognition model usually has the 

problem of a limited receptive field, which makes the 

extracted signal timing features not objective enough. To 

further improve the recognition rate of non-stationary time 

series signals, this paper uses the truncated migration 

algorithm to preprocess the signals, and constructs a new 

sampling matrix, which enables the signal recognition model 

to extract more sampling points and signal symbols. Figure 1 

shows the processing flow of the non-stationary time series 

signals. 

The information features of non-stationary time series 

signals can be generated by fusing the space and channel 

information in the local receptive field. Suppose the 

convolution operation is represented by ⊗ , the input is 

represented by A, the feature is represented by G, the 

convolution kernel is represented by L, LRl×l, the size of the 

convolution kernel is represented by l. Then, the convolutional 

operation can be expressed as: 

 
G A L=   (9) 

 

The receptive field of G is limited by L and A. Changes in 

the sign of a signal are characteristic for non-stationary time 

series signal identification. Traditional signal recognition 

models are difficult to capture long-term dependencies, and 

can only classify non-stationary time series signals by 

comparing the signal signs of each sampling point. In this 

paper, the data truncation migration algorithm is used to 

enable the signal recognition model to compare more symbolic 

information. The specific steps of the algorithm are as follows: 
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Step 1: Assuming that the length is represented by k, and 

the width and channel dimensions are 2 and 1, respectively. 

Then, the sampling matrix BC can be reshaped as (2, k, 1). 

Step 2: Set the distance R to be moved to describe a 

truncation and the number of truncation movement times BP. 

Step 3. Let B0 be the original sampling matrix i. Migrate the 

1×R truncation at the right end of B0 to the leftmost of that 

matrix to produce matrix B1. Then migrate the 2×R truncation 

at the right end of B1 to the leftmost of B1 to produce matrix 

B2. Perform similar migration P times to produce matrix BP. 

The combination of B0 and B1 makes {bk}, k[1, R] close to 

{bk}, k[k-R+1, k} in the horizontal direction, and close to 

{bk}, k[R, 2R] in the vertical direction. The combination of 

B1 and B2 makes {bk}k[R, 3R] close to {bk}, k[1, R] and 

{bk}, k[k-R-1, k} in the horizontal direction, and close to {bk}, 

k[3R, 5R] in the vertical direction, and so on. 

Step 4. After moving P times, if the following formula is 

established, return to Step 3. Otherwise, go to Step 5. 
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Step 5: Merge the sampling matrices B0 to BP through the 

"Concatenate" operation (Figure 2), and denote the generated 

new sampling matrix by BIW. The size of BIW is (2P+2, k, 1), 

and the "Concatenate" operation is represented by "⊕". Then, 

BIW can be formed by the following formula: 

 

0 1 ...IW PB B B B=     (11) 

 

Step 6: Convert BIW into a sampling matrix BXT based on 

amplitude X and phase T: 
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Step 7: Merge BIW and BXT in the channel dimension through 

feature concatenation. Take the formed new matrix as the 

input of the classifier B'C, then: 

 

'C IW XTB B B=   (13) 

 

To enhance the extracted non-stationary time series signal 

features, the conversion result of the sampling matrix is 

transformed into the form of polar coordinates through Steps 

6 and 7. The final output is matrix B'C of the size (2P+2, k, 2). 

 

 
 

Figure 1. Processing flow of the non-stationary time series 

signal 

 
 

Figure 2. Operation principle of feature concatenation 

 

 

4. MODEL CONSTRUCTION 

 

Confusion can easily result from non-stationary time series 

signals whose distribution law is time-dependent. In order to 

recognize non-stationary time series signals defined by 

significant chaotic classes, this paper introduces multi-task 

learning. In this study, the network that can discriminate 

between two non-stationary time series signals is employed for 

auxiliary classification tasks, with the multi-task learning 

network's primary task being the identification of all non-

stationary time series signals. On this basis, this paper 

connects gated recurrent unit (GRU), responsible for the 

auxiliary tasks, with convolutional neural network (CNN), 

responsible for the primary task, in series into a model (Figure 

3). 

The GRU model contains two gates, the update gate cp and 

the reset gate sp. The state fp at time p depends on how much 

information is inherited from state fp-1 at time p-1, and how 

much new information is extracted from the candidate state ḟp 

at time p. Both of the information volumes are decided by the 

update gate cp. The value of cp increases with the importance 

of the state at the previous moment to the state at the current 

moment. Let ap be the input vector at the current moment, Qc 

be the weight matrix of the update gate, ε(.) be the sigmoid 

function, and yc be the bias of the update gate. Then, cp can be 

calculated by:  

 

( )1p c p c p cc Q a Q f y −= + +  (14) 

 

Whether the candidate state ḟp at time p depends on the state 

fp-1 at time p-1 depends on the reset gate sp. The less important 

the state at the previous moment to the state at the current 

moment, the smaller the sp. Let Qs and ys be the weight and 

bias of the reset gate, respectively. Then, sp can be calculated 

by: 

 

( )1p s p s p ss Q a Q f y −= + +  (15) 

 

Let Qf, yf and ○ be weight, bias, and Hadamard product, 

respectively. Then, the candidate state ḟp can be calculated by: 

 

( )( )1Tanhp f p f p p ff Q a Q s f y−= + +& o  (16) 

 

The output of the GRU model can be expressed as: 

 

( ) 11p p p p pf c f c f−= − + &o o  (17) 

 

Since this article sets up several auxiliary task models for 

the non-stationary time series signal identification model, it is 

vital to thoroughly analyze the over-fitting phenomenon of the 
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model, even though the performance of the GRU model will 

improve as the number of layers grows. In this study, a 3-layer 

GRU model is constructed. 

The primary classification job model for non-stationary 

time series signals accepts input in the one-dimensional time 

series A/P format. In order to increase the rate at which non-

stationary time series signals are recognized, this study builds 

a model for the primary task classification using CNN and 

GRU in series. It also realizes the merging of the spatial and 

temporal aspects of the signal. The model training process is 

shown in Figure 4. 

 

 
 

Figure 3. Structure of the detection model 

 

 
 

Figure 4. Flow of model training 

5. EXPERIMENTS AND RESULTS ANALYSIS  

 

The results of data preprocessing using various numbers of 

single Gaussian models are shown in Figure 5. The algorithms 

in this work correspond to algorithms 1 through 5, with 2, 3, 4, 

5, and 6 being the number of single Gaussian models, 

respectively. The figure shows that the error value of the non-

stationary time series signal change point detection is lowest 

when the number of single Gaussian models is 4. Thus, it is 

determined that there should be exactly four single Gaussian 

models. 

Figure 6 displays the recognition model's training and 

validation losses. The figure shows that the model's 

convergence occurs quickly, there is no over-fitting after 80 

iterations, and both the training set's and the test set's 

performance are satisfactory. Table 1 displays, for various 

values of the distance R to be shifted by a truncation, the 

accuracy of non-stationary time series signal detection. The 

average value and maximum value of the non-stationary time 

series signal recognition rate are at their highest when the 

distance to be moved for a truncation is 4. Currently, less than 

1 second is needed for one iteration, which is also within the 

allowed range of less than 1 minute. 

Figure 7 compares the detection accuracies of different 

signal recognition models. It is observed that, with the growth 

of the signal to noise ratio (SNR), the signal recognition effect 

of five detection models all improves, including the envelope 

feature-based model, the double spectra feature-based model, 

the wavelet transform feature-based model, the multilayer 

perceptron (MLP), and long short-term memory (LSTM) 

model. The envelope feature-based model, the double spectra 

feature-based model, the wavelet transform feature-based 

model cannot extract more time series features of 

nonstationary time series signals, or fuse the spatial and 

temporal features of the signals. Their highest detection 

accuracy is around 70%. Despite capable of extracting spatial 

and temporal features, the MLP cannot connect adjacent time 

domain signals, and its accuracy is about 80%. Our model 

fuses the spatial and temporal features of the signals, and 

differentiates the signals with confusion phenomenon. The 

highest accuracy is around 90%. 

The detection accuracies with different input formats were 

compared to further verify the effectiveness of our model on 

nonstationary time series signals. As shown in Table 2 and 

Figure 8, the detection accuracies with the two formats (image 

format and time series format) are similar. It is verified that the 

one-dimensional time-series format input, which has certain 

advantages in theory, also has ideal recognition performance 

in the actual process of signal recognition with confusion. 

Compared with the other five models, our model boasts high 

mean accuracies with both two input formats. Whether the 

SNR is low, medium or high, our model can recognize 

nonstationary time series signals better than the image format. 

This further verifies the effectiveness of our model. 

 

Table 1. Detection accuracies at different R values 

 

R 
Maximum 

accuracy 

Mean 

accuracy 

Matrix 

shape 

Iterative 

time 

1 95.27% 63.58% (36,114,6) 142s 

2 93.24% 67.42% (25,174,1) 85s 

3 93.52% 69.18% (11,196,5) 61s 

4 98.31% 70.54% (18,142,1) 59s 

5 96.47% 66.37% (16,195,4) 51s 

6 94.18% 51.24% (13,127,6) 57s 
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Figure 5. Change point detection errors of different signal 

Gaussian models 

 

 
 

Figure 6. Training and verification losses of the 

identification model 

 

 
 

Figure 7. Detection accuracies of different signal recognition 

models 

 
 

Figure 8. Detection accuracies of input formats 

 

Table 2. Mean detection accuracies with different input 

formats 

 

Model 

number 

Input 

format 

Mean detection accuracy 

SNR 

interval 

Low 

SNR 

Medium 

SNR 

High 

SNR 

1 

Image 62.14 21.62 50.81 80.92 

Time 

series 
59.82 19.85 59.27 84.26 

2 

Image 52.65 17.34 50.61 68.04 

Time 

series 
44.96 18.51 42.78 76.92 

3 

Image 59.81 19.14 63.61 85.37 

Time 

series 
63.47 19.39 57.41 80.69 

4 

Image 65.23 27.52 60.81 88.92 

Time 

series 
64.58 20.45 61.21 89.24 

5 

Image 72.68 21.04 68.61 88.09 

Time 

series 
81.49 24.91 70.74 89.96 

Our 

model 

Image 80.47 29.34 73.69 91.32 

Time 

series 
89.22 31.76 77.61 95.62 

 

 

6. CONCLUSIONS 

 

This paper investigates the detection and analysis of non-

stationary time series signals using deep learning and data 

preprocessing. The fitting model of the historical stationarity 

index is built based on the Gaussian mixture model of single 

Gaussian models, and the change point of the non-stationary 

time series signal is detected. To further increase the signal's 

recognition rate, the non-stationary time series signal is 

preprocessed using the truncated migration algorithm. The 

main classification task and the auxiliary classification tasks 

are constructed, and coupled with multi-task learning, to 

identify non-stationary time series signals characterized by 

huge chaotic classes through multi-task learning. Through 

experiments, the change point detection errors of different 

number of single Gaussian models are compared, indicating 

that the best number is 4. Then, the training and validation 

looses of the recognition model were presented, which confirm 

that the model converges quickly. In addition, the detection 
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accuracies at different R values and of different models were 

contrasted. The results show that the one-dimensional time-

series format input, which has certain advantages in theory, 

also has ideal recognition performance in the actual process of 

signal recognition with confusion. Finally, the mean 

recognition accuracies of models with different input formats 

are compared, suggesting the effectiveness of our algorithm 

and model. 
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